Rules of Inference, 1.5

Tom Kelliher, MA 190

Feb. 8, 2008

Modus Ponens

\begin{displaymath}
\begin{array}{l}
p \rightarrow q \newline p
\end{array}\over...
...hbox{.}\kern-0.1em\lower0.2ex\hbox{.}\thinspace \hspace{1em} q
\end{displaymath}

Modus Tollens

\begin{displaymath}
\begin{array}{l}
\neg q \newline p \rightarrow q
\end{array}...
....}\kern-0.1em\lower0.2ex\hbox{.}\thinspace \hspace{1em} \neg p
\end{displaymath}

Hypothetical Syllogism

\begin{displaymath}
\begin{array}{l}
p \rightarrow q \newline q \rightarrow r
\e...
....1em\lower0.2ex\hbox{.}\thinspace \hspace{1em} p \rightarrow r
\end{displaymath}

Disjunctive Syllogism

\begin{displaymath}
\begin{array}{l}
p \vee q \newline \neg p
\end{array}\over \...
...hbox{.}\kern-0.1em\lower0.2ex\hbox{.}\thinspace \hspace{1em} q
\end{displaymath}

Addition

\begin{displaymath}
\begin{array}{l}
p~~~
\end{array}\over \hspace{-1.5em}\leave...
...\kern-0.1em\lower0.2ex\hbox{.}\thinspace \hspace{1em} p \vee q
\end{displaymath}

Simplification

\begin{displaymath}
\begin{array}{l}
p \wedge q
\end{array}\over \hspace{-3.5em}...
...hbox{.}\kern-0.1em\lower0.2ex\hbox{.}\thinspace \hspace{1em} p
\end{displaymath}

Conjunction

\begin{displaymath}
\begin{array}{l}
p~~~ \newline q
\end{array}\over \hspace{-1...
...ern-0.1em\lower0.2ex\hbox{.}\thinspace \hspace{1em} p \wedge q
\end{displaymath}

Resolution

\begin{displaymath}
\begin{array}{l}
p \vee q \newline \neg p \vee r
\end{array}...
...\kern-0.1em\lower0.2ex\hbox{.}\thinspace \hspace{1em} q \vee r
\end{displaymath}

Universal instantiation

\begin{displaymath}
\begin{array}{l}
\forall x \: P(x)
\end{array}\over \hspace{...
....}\kern-0.1em\lower0.2ex\hbox{.}\thinspace \hspace{0.5em} P(c)
\end{displaymath}

Universal generalization

\begin{displaymath}
\begin{array}{l}
P(c)~{\rm for~all}~c
\end{array}\over \hspa...
...\lower0.2ex\hbox{.}\thinspace \hspace{0.5em} \forall x \: P(x)
\end{displaymath}

Existential instantiation

\begin{displaymath}
\begin{array}{l}
\hspace{-2.5em}\exists x \: P(x)
\end{array...
...er0.2ex\hbox{.}\thinspace \hspace{0.5em} P(c)~{\rm for~some}~c
\end{displaymath}

Existential generalization

\begin{displaymath}
\begin{array}{l}
P(c)~{\rm for~some}~c
\end{array}\over \hsp...
...\lower0.2ex\hbox{.}\thinspace \hspace{0.5em} \exists x \: P(x)
\end{displaymath}

Universal modus ponens

\begin{displaymath}
\begin{array}{l}
\forall x \: P(x) \rightarrow Q(x) \newline...
....}\kern-0.1em\lower0.2ex\hbox{.}\thinspace \hspace{0.5em} Q(a)
\end{displaymath}

Universal modus tollens

\begin{displaymath}
\begin{array}{l}
\forall x \: P(x) \rightarrow Q(x) \newline...
...rn-0.1em\lower0.2ex\hbox{.}\thinspace \hspace{0.5em} \neg P(a)
\end{displaymath}

Exercises

pp. 72-74: 1; 3 d, e; 5; 7; 14 c; 23; 27.



Thomas P. Kelliher 2008-02-07
Tom Kelliher