
Transactions Lab I

Tom Kelliher, CS 417

The purpose of this lab is for you to gain some understanding of how transactions work, see for
yourselves how the various SQL isolation levels correspond to the ACID properties described in the
textbook, and experiment with concurrent transactions to observe how they interact. “Pair-up”
for this lab, using your project team as the “pair.”

This is a graded lab. There are several boxed questions throughout the lab. Record your
answers to these questions, using LibreOffice Writer or LATEXon phoenix, or a similar piece of
software. Number your answers using the subsection numbers shown in each box. Turn in hard
copy of one answers document per pair. Record the names of the members of the pair at the
beginning of the answers document.

1 Preliminaries

Complete this section individually.

1. Download accounts.sql and movies.sql from the course web site to one of your directories
on phoenix.

2. You’ve got a decision to make here regarding how psql handles your transactions for you.
There’s no “preferred” way — it all boils down to which of the following alternatives is least
likely to trip you up while you’re working on the lab and on your project.

psql defaults to “autocommit” mode, meaning that a COMMIT is automatically executed
after each SQL command that you run. You don’t want this behavior occurring during a
transaction. To disable this behavior, run this command each time you start psql:

\set AUTOCOMMIT off -- The capitalization matters here.

With this approach, you have to remember to run this command every time you start psql.

Alternatively, you can create the file .psqlrc in your home directory and put the command
above into it. psql runs the commands in this file automatically each time your start it. The
risk with disabling AUTOCOMMIT is that you have to remember to explicitly run COMMIT before
exiting psql, or you’ll lose any committed work — including any tables that you created and
populated during the session. If you choose this alternative, you may want to remind yourself
by using \echo in your .psqlrc file:

\echo ***** Warning --- Disabling AUTOCOMMIT *****

\set AUTOCOMMIT off

The third alternative is to leave the AUTOCOMMIT setting on and start each of your transactions
with the BEGIN SQL statement. When psql processes BEGIN, it disables AUTOCOMMIT until
COMMIT or ABORT is entered, or an error occurs, then it re-enables AUTOCOMMIT mode.

1

3. Executing transactions concurrently requires that you run two psql sessions in separate shell
sessions and that you be able to single-step the SQL commands in each transactions. One
way to single-step transactions is to simply enter the commands one-at-a-time into each psql

session, but that is tedious and error-prone. It’s easier to enter the commands into a .sql

script and then run the script from within psql:

\i tr1.sql

But, how do you single-step the script’s execution? The answer is to run psql in single-step
mode by passing it the -s switch:

psql -s

4. Finally, if you’re constantly forgetting to terminate your SQL statements with a semicolon,
you can run psql in single-line mode, using the -S switch:

psql -S

This causes psql to interpret end-of-line as a semicolon.

Note that you can use as many switches as you want when you start a program:

psql -s -S

For information on other psql options, refer to psql’s man page:

man psql

2 Transactions Basics

Work individually on this part, using your personal database, so long as it doesn’t contain a table
named movies or accounts. If you can’t remember the names of your tables, use \d to view them.
If you have already have a table named movies or accounts, the simplest thing to do is to create
and use a new database for this lab:

create database tpktrlab; -- Use YOUR initials, not mine!

\c tpktrlab -- Connect to this database.

To connect directly to this database when starting psql, you would start psql this way:

psql tpktrlab

2.1 “Crashing” a Transaction, I

1. Start psql and run the movies.sql script to create and populate the movies table. View
the table’s data.

2. Start a transaction. (If you’ve disabled AUTOCOMMIT, then you’re already in a transaction.
Otherwise, issue the BEGIN command.)

2

3. Update the table data in one or more rows. (Personally, I think the freshness and score
attributes for Shrek are way too high.)

4. Exit (\q) psql without committing or aborting the transaction. This simulates a “crashed”
transaction. Re-start psql and view the table data.

2.1. Did your changes survive the “crash”? Explain.

2.2 “Crashing” a Transaction, II

1. Repeat the previous transaction experiment, this time committing the changes before “crash-
ing.”

2.2. Did your changes survive the “crash”? Explain.

2.3 Using Savepoints

1. Start a transaction and update a few movies records. View the movies table to verify the
updates.

2. Use the SAVEPOINT command to create a savepoint.

3. Insert two new rows into movies. Verify the inserts.

4. Create a second savepoint.

5. Simulate an erroneous update by running

update movies set score=42;

Verify that the score attribute of each of the rows of movies is now 42.

6. Use ROLLBACK TO SAVEPOINT to roll back the transaction to your second savepoint. View the
result.

2.3. Describe and explain your observations for this step and the following
steps.

7. Use ROLLBACK TO SAVEPOINT again to roll back the transaction to your first savepoint. View
the result.

8. Try to roll forward to your second savepoint. View the result.

9. Commit the transaction and view the movies table.

3

3 Concurrent Transactions

Work in your pairs for the remainder of this lab. Use your project database for this work. From
your personal account on phoenix, you can connect to your project database using your project
username by starting psql this way:

psql project_database project_username

for example:

psql habibi habibi

You will be prompted for a password. Use the password for your project database account.
To simulate concurrent transactions, you’ll run two psql sessions, with one transaction run-

ning in each session. One member of each pair should control one session with a second member
controlling the second session.

3.1 Verifying Repeatable Read Isolation

1. Start one psql session and run the movies.sql script. Start a transaction (TR1).

2. Start a second psql session and start a transaction (TR2).

3. Using the SET TRANSACTION command, set the isolation level of TR2 to repeatable read:

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;

and view the movies table.

4. In TR1, update one or more rows of movies, but don’t commit TR1. Verify the update.

5. In TR2, view the movies table.

6. Commit TR1.

7. In TR2, view the movies table again. Abort TR2.

3.1. Describe and explain your observations.

3.2 Verifying Read Committed Isolation

1. Repeat the previous experiment, this time using the READ COMMITTED isolation level for TR2.

3.2. Describe and explain your observations.

3.3 Verifying Serializable Isolation

1. Design a transaction schedule to verify that the SERIALIZABLE isolation level is not subject
to nonrepeatable reads and phantom reads. Run your transaction schedule.

3.3. Describe and explain the result of your experiment. Include a copy of
the transaction schedule that you used.

4

3.4 Determining psql’s Default Isolation Level

1. Design and conduct an experiment to determine psql’s default isolation level.

3.4. Describe and explain the result of your experiment. Include a copy of
the transaction schedule(s) that you used.

5

