Normalization I

Tom Kelliher, CS 417

1 Administrivia

Outline

- 1. Normalization Examples
- 2. Vocabulary
- 3. Normalization practice

Coming Up

Normalization II.

2 Normalization Examples

Consider the relation:

NewClass(classNo, stuId, stuLastName, facId, schedule, room, grade)

with the instance:

classNo	stuId	stuLastName	facId	schedule	room	grade
ART103A	S1001	Smith	F101	MWF9	H221	A
ART103A	S1010	Burns	F101	MWF9	H221	
ART103A	S1006	Lee	F101	MWF9	H221	В
CSC201A	S1003	Jones	F105	TuThF10	M110	A
CSC201A	S1006	Lee	F105	TuThF10	M110	G
HST205A	S1001	Smith	F202	MWF11	H221	

- 1. Identify all dependencies.
- 2. This relation is in 1NF. Why?
- 3. This relation is not in 2NF. Why?
- 4. Decompose the relation into 2NF.
- 5. Are the resulting relations in 3NF? In BCNF?

Consider the relation:

NewStudent(<u>stuId</u>, lastName, major, credits, status)

with the instance:

stuId	1astName	major	credits	status
S1001	Smith	History	90	Senior
S1003	Jones	Math	95	Senior
S1006	Lee	CSC	15	Freshman
S1010	Burns	Art	63	Junior
S1060	Jones	CSC	25	Freshman

- 1. This relation is not in 3NF. Why?
- 2. How would you put the relation into 3NF?
- 3. Is putting the relation into 3NF advisable?

3 Vocabulary

- 1. A functional dependency is actually a(n) _____ relationship from attribute set A to attribute set B.
 - A. one-to-one
 - B. recursive
 - C. many-to-many
 - D. many-to-one
- 2. Describe three types of anomalies that can result from unnormalized schemas.
- 3. If X and Y are sets of attributes of relation R, we say that Y is functionally dependent on X if
 - A. for each X value there is only one Y value
 - B. for each Y value there is only one X value
 - C. no two X values have the same Y value
 - D. when two rows have the same Y value they also have the same X value
- 4. In the relational model, every determinant is always
 - A. a candidate key
 - B. a superkey
 - C. a composite key
 - D. none of the above
- 5. Which of the following is not one of the major objectives of normalization?
 - A. removing redundancy
 - B. improving efficiency
 - C. removing anomalies
 - D. increasing model flexibility

- 6. A relation is first normal form if
 - A. every attribute is single-valued for each tuple
 - B. the domains of the attributes are atomic
 - C. each cell of the table can contain only one value
 - D. all of the above
- 7. A relation is second normal form if it is 1NF and
 - A. every attribute is single-valued
 - B. every attribute is determined by a portion of the key
 - C. every non-key attribute is dependent on the entire key
 - D. no non-key attribute determines another
- 8. In the relation $R(\underline{A}, \underline{B}, C, D)$, having the composite key {A, B}, which of the following FDs would demonstrate that the relation is not 2NF?
 - A. $A \rightarrow B$
 - B. A \rightarrow C
 - C. C \rightarrow D
 - D. any of the above
- 9. A relation having only one candidate key is third normal form if it is 2NF and
 - A. no non-key attribute is determined by only part of the key
 - B. no non-key attribute is dependent on another non-key attribute
 - C. no part of the key is dependent on another part of the key
 - D. there are no partial functional dependencies
- 10. A relation is Boyce-Codd Normal Form if
 - A. every superkey is a candidate key
 - B. every determinant is a superkey
 - C. every candidate key is a primary key
 - D. it has overlapping candidate keys
- 11. In the relation $R(\underline{A}, \underline{B}, C, D)$, having the composite key $\{A, B\}$, which of the following FDs would demonstrate that the relation is not 3NF?
 - A. $C \rightarrow \{A, B\}$
 - B. $\{A, B\} \rightarrow C$
 - C. C \rightarrow D
 - D. any of the above
- 12. If a relation is 2NF but not 3NF, it must have which type of functional dependency?
 - A. multivalued
 - B. partial
 - C. join
 - D. transitive

4 Normalization Practice

1. Problem 6.5 in the textbook, parts a-c. (You'll need this for 6.6 later.)

- 2. Problem 6.1 in the textbook, parts a and b. (You'll need this for parts c and d later.)
- 3. Problem 6.2 in the textbook, parts a and b. (You'll need this for parts c and d later.)