
gitSetup Sun Jan 30 15:45:08 2022 1

This is a synopsis of what we’ll be doing in class. I’ll demonstrate,

while you follow along.

#

Assuming:

1) You’ve sent me your GitHub username

2) You’ve accepted the invitation to join the

GoucherCollegeCS411Spring2022 organization sent to the email

associated with your GitHub account

3) I’ve had time to add you to the cs411 team

From Canvas, follow the link to create the GitHub individual work

repository.

Open a terminal window.

Let’s be very sure you’re in your home directory.

cd

Don’t ignore the period at the end of the command line.

cp -i ˜kelliher/pub/cs411/.gitconfig .

Or substitute your favorite text editor. Change name, email, and,

perhaps, editor. Save and exit.

geany .gitconfig

Back in your home directory...

mkdir Cs411

cd Cs411

Using a web browser, log into GitHub and go to the class organization.

The following command will fail unless the three assumptions above all hold.

You can’t move on until this git clone succeeds. Replace ... with the

URL for the Cs411GitHubRepo in the class organization.

#

You’ll be asked for your GitHub username and a "password." Your GitHub

password WILL NOT WORK!!! Go to the settings page for your account, then

Developer settings, then Personal access tokens, and generate a new

token. Use this token for your "password" here.

git clone ...

cd Cs411GitHubRepo

Rename the original remote repository. You’ll get new assignments from

this remote repository, named upstream.

git remote rename origin upstream

Replace ... here with the URL of your work- repository in the class

organization. The origin remote repository is where you publish your

work.

git remote add origin ...

The ’-u origin main’ here sets up your local main branch to "track" the

origin remote’s main branch.

gitSetup Sun Jan 30 15:45:08 2022 2

git push -u origin main

At this point, you’re ready to start working. Start with hello.c in the

Practice directory in the repo. Open it and follow the instructions.

#

As you make and save changes, run

git status

from time-to-time so that you can see suggestions for changed files

which should be "staged" for commit. hello.c will be one. Here’s how to

stage it:

git add hello.c

Not all files should be staged. Executable files are a good example.

The hidden file .gitignore is used to inform git which files should be

ignore. Create a .gitignore file and add hello and practice to it, one

file name per line. Save the file and add it to be staged.

#

Sets of related changes are collected into commits. Once you’ve staged

all your changes for a commit, run this command:

git commit

An editor will pop up so that you can write a commit message. The

message should be written in the present tense and summarize the changes

being made in the commit. The commit will happen once your save the

commit message and exit the editor.

#

The convention is that commits happen fairly frequently.

#

It’s also the convention to not perform development on the main branch.

We’ll look into this later.

#

You push your commits to publish them. It’s a good idea to synchronize

with the remote before publishing:

git pull

This performs a fetch and a merge. Hopefully, you won’t have a merge

conflict, but we’ll see how to handle this later.

#

Now, publish your commits:

git push

Note that we don’t need to use the ’-u origin main’ option again.

