
PostgreSQL Triggers Lab II

Tom Kelliher, CS 417

The purpose of this lab is for you to gain some understanding of how triggers and stored procedures
are used in PostgreSQL to implement integrity constraints. You will create a PL/pgSQL function
which will implement a semantic constraint for a payroll database. The constraint is: No employee
should earn more than his or her manager. You will then implement a second trigger and stored
procedure. This trigger will maintain the constraint that no manager should earn more than the
sum of the salaries of those she or he manages. These will be separate, but concurrent, triggers.

1. Download triggerLab2.sql from the course web site to one of your directories on phoenix.

2. Open this file in an editor. Notice that it consists of three parts: a clean-up section; a section
which creates the payroll table, PL/pgSQL function, and trigger; and a section which tests
the trigger function.

3. You will first be writing the code for CheckEmployeeFunc(). If the salary in question is
greater than the manager’s salary, adjust the salary to the manager’s salary and raise a
notice. If the employee has no manager, raise a notice to this effect.

4. When you’re ready to run the code, run psql to open your personal database and execute
the SQL code in your file. The output from the run should be very similar to:

psql:triggerLab2Soln.sql:6: ERROR: function checkemployeefunc() does not

exist

psql:triggerLab2Soln.sql:14: ERROR: table ‘‘payroll’’ does not exist

psql:triggerLab2Soln.sql:28: NOTICE: CREATE TABLE / PRIMARY KEY will

create implicit index ‘‘payroll_pkey’’ for table ‘‘payroll’’

CREATE TABLE

CREATE FUNCTION

CREATE TRIGGER

psql:triggerLab2Soln.sql:75: NOTICE: Tom has no manager.

INSERT 0 1

psql:triggerLab2Soln.sql:77: NOTICE: Phong has no manager.

INSERT 0 1

psql:triggerLab2Soln.sql:79: NOTICE: Jill has no manager.

INSERT 0 1

UPDATE 1

UPDATE 1

(Continued on next page.)

1

psql:triggerLab2Soln.sql:84: NOTICE: Salary adjusted for Phong.

UPDATE 1

id | name | mid | salary

----+-------+-----+--------

1 | Jill | | 100000

2 | Tom | 1 | 75000

3 | Phong | 1 | 100000

(3 rows)

psql:triggerLab2Soln.sql:88: NOTICE: Jill has no manager.

UPDATE 1

id | name | mid | salary

----+-------+-----+--------

2 | Tom | 1 | 75000

3 | Phong | 1 | 100000

1 | Jill | | 200000

(3 rows)

5. Create a trigger, CheckManagerTrigger, and stored procedure, CheckManagerFunc(), to
enforce the constraint that no manager earn more than the sum of his or her employees’
salaries. When adjusting a salary, raise a notice. This trigger should enable on insert or
update events, should be a row-level trigger, and the condition should be checked prior to the
occurrence of the event.

6. When you’re ready to run the code, run psql to open your personal database and execute
the SQL code in your file. The output from the run should be very similar to:

DROP TRIGGER

DROP FUNCTION

DROP TRIGGER

DROP FUNCTION

DROP TABLE

psql:triggerLab2Soln.sql:28: NOTICE: CREATE TABLE / PRIMARY KEY will

create implicit index ‘‘payroll_pkey’’ for table ‘‘payroll’’

CREATE TABLE

CREATE FUNCTION

CREATE TRIGGER

CREATE FUNCTION

CREATE TRIGGER

psql:triggerLab2Soln.sql:97: NOTICE: Tom has no manager.

INSERT 0 1

psql:triggerLab2Soln.sql:99: NOTICE: Phong has no manager.

INSERT 0 1

psql:triggerLab2Soln.sql:101: NOTICE: Jill has no manager.

INSERT 0 1

(Continued on next page.)

2

UPDATE 1

UPDATE 1

psql:triggerLab2Soln.sql:106: NOTICE: Salary adjusted for Phong.

UPDATE 1

id | name | mid | salary

----+-------+-----+--------

1 | Jill | | 100000

2 | Tom | 1 | 75000

3 | Phong | 1 | 100000

(3 rows)

psql:triggerLab2Soln.sql:110: NOTICE: Jill has no manager.

psql:triggerLab2Soln.sql:110: NOTICE: Salary adjusted for Jill.

UPDATE 1

id | name | mid | salary

----+-------+-----+--------

2 | Tom | 1 | 75000

3 | Phong | 1 | 100000

1 | Jill | | 175000

(3 rows)

3

