Problem Set 9

CS 411

Due at the beginning of class on the first class day of the following week. Sections 5.1-3

- 1. When do context switches occur with non-preemptive scheduling? With preemptive scheduling? Be specific.
- 2. Why is it important for the scheduler to distinguish I/O-bound programs from CPU-bound programs?
- 3. Consider the following set of processes, with the length of the CPU burst given in milliseconds:

<u>Process</u>	Burst Time	Priority
P_1	2	2
P_2	1	1
P_3	8	4
P_4	4	2
P_5	5	3

The processes are assumed to have arrived in the order P_0 , P_1 , P_2 , P_3 , P_4 , P_5 , all at time 0.

- (a) Draw four Gantt charts that illustrate the execution of these processes using the following scheduling algorithms: FCFS, SJF, non-preemptive priority (a larger priority implies a higher priority), and RR with a quantum of 2.
- (b) Compute the average waiting time for each of the algorithms.