Problem Set 9 ## CS 411 Due at the beginning of class on the first class day of the following week. Sections 5.1-3 - 1. When do context switches occur with non-preemptive scheduling? With preemptive scheduling? Be specific. - 2. Why is it important for the scheduler to distinguish I/O-bound programs from CPU-bound programs? - 3. Consider the following set of processes, with the length of the CPU burst given in milliseconds: | <u>Process</u> | Burst Time | Priority | |----------------|------------|----------| | P_1 | 2 | 2 | | P_2 | 1 | 1 | | P_3 | 8 | 4 | | P_4 | 4 | 2 | | P_5 | 5 | 3 | The processes are assumed to have arrived in the order P_0 , P_1 , P_2 , P_3 , P_4 , P_5 , all at time 0. - (a) Draw four Gantt charts that illustrate the execution of these processes using the following scheduling algorithms: FCFS, SJF, non-preemptive priority (a larger priority implies a higher priority), and RR with a quantum of 2. - (b) Compute the average waiting time for each of the algorithms.