
Project 5: More Synchronization

CS 411

Introduction

Continue using your Project 4 repository for these two programs.

Dining Philosophers Variation

The “obvious” solution to the Dining Philosophers problem for five philosophers suffers from dead-
lock:

while (1) {

think();

wait(left_chopstick);

wait(right_chopstick);

eat();

signal(left_chopstick);

signal(right_chopstick);

}

Model the chopsticks using binary semaphores. Eliminate the circular wait property necessary for
a deadlock condition by using a counting semaphore to ensure that no more than four philosophers
are trying to eat at any time. Keep in mind that the Project 4 Dining Philosophers program used
a mutex and condition variables, so you will be starting this program from scratch, because of its
use of semaphores.

Philosophers should alternate between thinking for 1 millisecond and eating for 1 second. (See
the documentation in Section 3 of the Linux man pages for usleep() and sleep(). Carefully
note the units of these function’s parameters.) Each philosopher should announce its state changes
(thinking, hungry, and eating) and thread ID via printf() calls. Do remember to unbuffer I/O.
See example output below.

Pascal Pizza Party Protocol

The MaCS Department is throwing its annual Pascal Pizza Party, with a twist. A pizza maker
brings out a single 42 slice pizza at a time, and then goes into a back room to continue devising
evil programming projects for his operating systems students. The students at the party alternate
between talking and eating. 40 of the students take a single slice of pizza at a time when they eat.
The 41st student takes two slices at a time and the 42nd student takes three slices at a time. If
either of these two latter students don’t find enough available slices when they want to eat, they
wait for the next pizza to appear. The student who takes the last slice of pizza notifies the pizza
maker to produce the next pizza.

Write a program to solve this problem. You may use Pthreads semaphores, mutexes, and
condition variables as you see fit. Hint: You’ll probably want a single condition variable, used by
all of the student threads. See pthread_cond_broadcast().

1



Students alternate between talking (a random amount of time between 0 and 1 seconds; use the
delay function from Project 4 and a unique random seed for each student), standing in the pizza
line, and eating (0 delay). The student thread function should take as a parameter the number of
slices to take. Students announce how many slices they want when they enter the line, that they
are waiting if there aren’t enough slices for them currently, the number of slices they took, and
the number remaining, and when they request another pie from the pizza maker. The pizza maker
announces when he has provided a fresh pie. The pizza maker thread function should take as a
parameter the number of slices in a pie. Again, do unbuffer I/O. See example output below.

Example Dining Philosophers Output

Phil 3 thinking

Phil 1 thinking

Phil 4 thinking

Phil 0 thinking

Phil 2 thinking

Phil 3 hungry

Phil 3 eating

Phil 1 hungry

Phil 1 eating

Phil 0 hungry

Phil 4 hungry

Phil 2 hungry

Phil 3 thinking

Phil 1 thinking

Phil 2 eating

Phil 0 eating

Phil 3 hungry

Phil 1 hungry

Phil 0 thinking

Phil 4 eating

Phil 1 eating

Phil 2 thinking

Phil 0 hungry

Phil 2 hungry

Phil 4 thinking

Phil 3 eating

Phil 1 thinking

Phil 0 eating

Phil 4 hungry

Phil 1 hungry

Phil 3 thinking

Phil 0 thinking

Phil 4 eating

Phil 2 eating

Phil 3 hungry

Phil 0 hungry

Phil 4 thinking

2



Phil 2 thinking

Phil 1 eating

Phil 3 eating

Phil 4 hungry

Phil 2 hungry

Phil 3 thinking

Phil 1 thinking

Phil 2 eating

Phil 0 eating

Phil 3 hungry

Phil 1 hungry

Phil 0 thinking

Phil 4 eating

Phil 1 eating

Phil 2 thinking

Phil 0 hungry

Phil 2 hungry

Phil 4 thinking

Phil 3 eating

Phil 1 thinking

Phil 0 eating

Phil 4 hungry

Phil 1 hungry

Phil 3 thinking

Phil 0 thinking

Phil 4 eating

Phil 2 eating

Phil 3 hungry

Phil 0 hungry

Phil 4 thinking

Phil 2 thinking

Phil 1 eating

Phil 3 eating

Phil 4 hungry

Phil 2 hungry

Example Pascal Pizza Party Protocol Output

Want 1 slices.

Gotta wait.

Want 1 slices.

Gotta wait.

Want 1 slices.

Gotta wait.

Want 1 slices.

Gotta wait.

Want 1 slices.

Gotta wait.

3



Want 1 slices.

Gotta wait.

Want 1 slices.

Gotta wait.

Want 1 slices.

Gotta wait.

Want 1 slices.

Gotta wait.

Want 1 slices.

Gotta wait.

Want 1 slices.

Gotta wait.

Want 1 slices.

Gotta wait.

Want 1 slices.

Gotta wait.

Want 1 slices.

Gotta wait.

Want 1 slices.

Gotta wait.

Want 1 slices.

Gotta wait.

Want 1 slices.

Gotta wait.

Want 1 slices.

Gotta wait.

Want 1 slices.

Gotta wait.

Want 1 slices.

Gotta wait.

Serving a fresh pie.

Got my 1 slices. 41 remain

Got my 1 slices. 40 remain

Want 1 slices.

Got my 1 slices. 39 remain

Want 1 slices.

Got my 1 slices. 38 remain

Want 1 slices.

Got my 1 slices. 37 remain

Got my 1 slices. 36 remain

Got my 1 slices. 35 remain

Got my 1 slices. 34 remain

Got my 1 slices. 33 remain

Want 1 slices.

Got my 1 slices. 32 remain

Got my 1 slices. 31 remain

Got my 1 slices. 30 remain

Want 1 slices.

4



Got my 1 slices. 29 remain

Got my 1 slices. 28 remain

Want 1 slices.

Got my 1 slices. 27 remain

Got my 1 slices. 26 remain

Got my 1 slices. 25 remain

Got my 1 slices. 24 remain

Got my 1 slices. 23 remain

Want 1 slices.

Got my 1 slices. 22 remain

Want 1 slices.

Got my 1 slices. 21 remain

Want 1 slices.

Got my 1 slices. 20 remain

Want 1 slices.

Got my 1 slices. 19 remain

Got my 1 slices. 18 remain

Got my 1 slices. 17 remain

Got my 1 slices. 16 remain

Got my 1 slices. 15 remain

Want 1 slices.

Got my 1 slices. 14 remain

Want 1 slices.

Got my 1 slices. 13 remain

Got my 1 slices. 12 remain

Got my 1 slices. 11 remain

Got my 1 slices. 10 remain

Want 1 slices.

Got my 1 slices. 9 remain

Want 2 slices.

Got my 2 slices. 7 remain

Want 2 slices.

Got my 2 slices. 5 remain

Want 3 slices.

Got my 3 slices. 2 remain

Want 3 slices.

Gotta wait.

Want 1 slices.

Got my 1 slices. 1 remain

Want 1 slices.

Got my 1 slices. 0 remain

Oh, Mr. Pizza Maker...

Serving a fresh pie.

Want 2 slices.

Got my 2 slices. 40 remain

Want 2 slices.

Got my 2 slices. 38 remain

Want 1 slices.

5



Got my 1 slices. 37 remain

Want 1 slices.

Got my 1 slices. 36 remain

Want 1 slices.

Got my 1 slices. 35 remain

Want 1 slices.

Got my 1 slices. 34 remain

Want 1 slices.

Got my 1 slices. 33 remain

Want 1 slices.

Got my 1 slices. 32 remain

Got my 3 slices. 29 remain

Want 3 slices.

Got my 3 slices. 26 remain

Want 1 slices.

Got my 1 slices. 25 remain

Want 1 slices.

Got my 1 slices. 24 remain

Want 1 slices.

Got my 1 slices. 23 remain

Want 1 slices.

Got my 1 slices. 22 remain

Want 1 slices.

Got my 1 slices. 21 remain

Want 1 slices.

Got my 1 slices. 20 remain

Want 1 slices.

Got my 1 slices. 19 remain

Want 1 slices.

Got my 1 slices. 18 remain

Want 1 slices.

Got my 1 slices. 17 remain

Want 1 slices.

Got my 1 slices. 16 remain

Want 1 slices.

Got my 1 slices. 15 remain

Want 1 slices.

Got my 1 slices. 14 remain

Want 1 slices.

Got my 1 slices. 13 remain

Want 1 slices.

Got my 1 slices. 12 remain

Want 1 slices.

Got my 1 slices. 11 remain

Want 1 slices.

Got my 1 slices. 10 remain

Want 1 slices.

Got my 1 slices. 9 remain

6



Want 1 slices.

Got my 1 slices. 8 remain

Want 1 slices.

Got my 1 slices. 7 remain

Want 1 slices.

Got my 1 slices. 6 remain

Want 1 slices.

Got my 1 slices. 5 remain

Want 1 slices.

Got my 1 slices. 4 remain

Want 1 slices.

Got my 1 slices. 3 remain

Want 1 slices.

Got my 1 slices. 2 remain

Want 1 slices.

Got my 1 slices. 1 remain

Want 1 slices.

Got my 1 slices. 0 remain

Oh, Mr. Pizza Maker...

Serving a fresh pie.

Want 1 slices.

Got my 1 slices. 41 remain

7


