The Relational Model

Tom Kelliher, CS 317

1 Administrivia

Announcements

Assignment

From Last Time

web.py tutorial and exercise.

Outline

- 1. Relational division
- 2. Vocabulary
- 3. Relational model practice

Coming Up

 SQL

2 Relational Division

3 Vocabulary

- 1. If $S = \{a, b\}$ and $T = \{1, 2, 3\}$ then the Cartesian product $S \times T$ has how many ordered pairs?
 - A. 5
 - B. 6
 - C. 8
 - D. 9

Write the ordered pairs.

- 2. If $S = \{a, b\}$ and $T = \{1, 2, 3\}$, which of the following can be a relation for $S \times T$?
 - A. (a,a), (a,b), (b,a)
 - B. (a,1), (b,2)
 - C. (a,2), (2,a)
 - D. (a,1), (a,3), (b,a)
- 3. Each row in a relational table is called a(n)
 - A. attribute
 - B. domain
 - C. relation
 - D. tuple
- 4. In the relational model, referential integrity is a constraint that places restrictions on the values of
 - A. references
 - B. foreign keys
 - C. superkeys
 - D. secondary keys
- 5. In the relational model, the table in which a foreign key appears as the primary key is called its
 - A. root relation
 - B. child relation
 - C. home relation
 - D. foreign relation
- 6. In the relational model, in the SELECT operation, the theta-condition refers to
 - A. the selection predicate
 - B. the selection subject

- C. the equality or inequality operator used
- D. the null condition
- 7. Which of the following cannot be done using just a PROJECT operator in the relational model
 - A. eliminating duplicate values
 - B. operating on more than one column
 - C. picking out target rows
 - D. picking out a vertical subset of a table
- 8. Which of the following operators allows us to combine pieces of information about an entity that appear on separate relational tables?
 - A. SELECT
 - B. PROJECT
 - C. NATURAL JOIN
 - D. UNION
- 9. When converting an E-R model to a relational model, the table for a binary relationship can be replaced by a foreign key provided the relationship is not
 - A. one-to-one
 - B. one-to-many
 - C. many-to-one
 - D. many-to-many
- 10. In converting from an E-R diagram to a relational model, tables are used to represent
 - A. entities only
 - B. relationships only
 - C. both entities and relationships
 - D. only entities and attributes
- 11. If A and B are entity sets with a one-to-one relationship A:B, all of the following are true of the relational model representation for them EXCEPT
 - A. the entities A and B may sometimes be combined into a single table with no relationship table needed
 - B. the relationship should be represented by placing both primary keys as foreign keys in the other table
 - C. the relationship can be represented by placing the primary key of A as a foreign key in the table for B
 - D. the relationship can be represented by placing the primary key of B as a foreign key in the table for A

4 Relational Model Practice

1. Consider this instance of a Student relation:

sid	пате	login	age	gpa
50000	Dave	dave@cs	19	3.3
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@ee	18	3.2
53650	Smith	smith@math	19	3.8
53831	Madayan	madayan@music	11	1.8
53832	Guldu	guldu@music	12	2.0

- (a) Give an example of an attribute (or set of attributes) that you can deduce is not a candidate key, based on this instance being legal.
- (b) Is there any example of an attribute (or set of attributes) that you can deduce is a candidate key, based on this instance being legal?
- 2. Consider this relation schema:

```
Students(sid: string, name: string, login: string, age: integer, gpa: real)
```

Faculty(fid: string, fname: string, sal: real)

Courses(cid: string, cname: string, credits: integer)

Rooms(rno: integer, address: string, capacity: integer)

Enrolled(sid: string, cid: string, grade: string)

Teaches(fid: string, cid: string)

Meets_In(cid: string, rno: integer, time: string)

- (a) List all the foreign key constraints among these relations.
- (b) Give an example of a (plausible) constraint involving one or more of these relations that is not a primary key or foreign key constraint.

3. Consider the following database instance, which contains information about employees and the projects to which they are assigned:

		Emp		
empId	empId		lastName	
E101	E101			
E105		Jones		
E110	E110		Adams	
E115	E115		Smith	
	As	sign		
empId	pro	jNo	hours	
E101	P10		200	
E101	P15		300	
E105	P10		400	
E110	P15		700	
E110	P20		350	
E115	P10		300	
E115	P20		400	

	Proj	
projNo	projName	budget
P10	Hudson	500000
P15	Columbia	350000
P20	Wabash	350000
P23	Arkansas	600000

Show all the tables (including the intermediate ones) that would be produced by each of the following relational algebra commands:

$$(\sigma_{\texttt{lastName}='\texttt{Adams'}}(\texttt{Emp})) \bowtie \texttt{Assign}$$

or informally:

SELECT Emp WHERE lastName = 'Adams' GIVING T1 T1 JOIN Assign GIVING T2

(b) Symbolically:

$$\Pi_{\texttt{empId}}((\sigma_{\texttt{budget}>\texttt{400000}}(\texttt{Proj})) \bowtie \texttt{Assign})$$

or informally:

SELECT Proj WHERE budget > 400000 GIVING T1 T1 JOIN Assign GIVING T2 PROJECT T2 OVER empld GIVING T3

4. Using these relations:

Relation S, suppliers entities

S#	SNAME	STATUS	CITY
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

Relation P, parts entities

P#	PNAME	COLOR	WEIGHT	CITY	
P1	Nut	Red	12.0	London	
P2	Bolt	Green	17.0	Paris	
РЗ	Screw	Blue	17.0	Oslo	
P4	Screw	Red	14.0	London	
Р5	Cam	Blue	12.0	Paris	
P6	Cog	Red	19.0	London	

Table SP, suppliers to parts relationship

S#	P#	QTY
S1	P1	300
S1	P2	200
S1	Р3	400
S1	P4	200
S1	P5	100
S1	P6	100

```
S2
    P1
         300
S2
    P2
         400
S2
    P5
         420
S3
    P2
         200
S4
    P2
         200
S4
    P4
         300
S4
    P5
         400
```

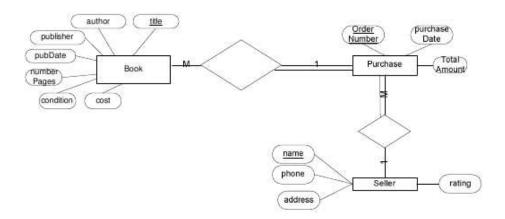
Write the sequence of relational algebra commands to find the names of those suppliers that supply all parts weighing 12.0. Remember, division is defined as

$$\alpha \div \beta = \prod_{A-B}(\alpha) - \prod_{A-B}((\prod_{A-B}(\alpha) \times \beta) - \alpha)$$

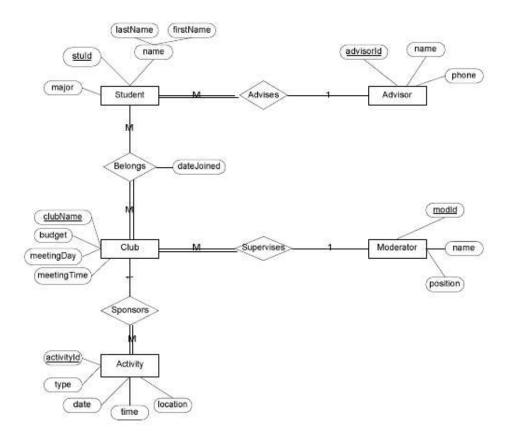
where A-B are those attributes of α not in β . Before you start writing relational algebra commands to implement the division, you'll need to write commands to construct α and β .

Show all the tables (including the intermediate ones) that would be produced by each of the relational algebra commands that you write.

5. Consider the following schema for a database that keeps information about business trips and their associated expenses by employees:


```
TRIP (TripId, DepartureCity, DestinationCity, DepartureDate, ReturnDate, SSN)

EXPENSE (TripId, Item, Date, Amount)
```


Write relational algebra queries for each of the following:

- (a) Get a list of all the different destination cities where the employees have taken trips.
- (b) Find all the employee information for employees who work in Department 10.
- (c) Find the names of all employees who have departed on trips from London.
- (d) Find the names of all employees who have any expense item with value 'Entertainment'.

6. Design a relational database schema for the data about the book collector example that you worked on earlier. Start from this E-R diagram:

7. Design a relational database schema for the data about college students, academic advisors, and clubs that you worked on earlier. Start from this E-R diagram:

