
On Making Relational Division
Comprehensible

Lester I. McCann
mccann@uwp.edu

Computer Science Department

University of Wisconsin — Parkside

Kenosha, WI

Frontiers in Education

November 7, 2003
FIE 2003 – p.1/33

http://www.cs.uwp.edu/staff/mccann/

Outline

Background

The Relational Division Operator
Purpose
Connection with Cartesian Product
An Example of Its Use

Division in Relational Algebra

Division in SQL
From Relational Algebra Expression
Using a Logical Tautology
Using Set Containment
Comparing Set Cardinalities

Division Pitfalls

Conclusion

FIE 2003 – p.2/33

Background

Relational database management systems are based
on Codd’s relational data model

Rooted in set theory

Codd’s original data languages:
Relational Calculus (non–procedural)
• Based on First–Order Predicate Calculus
Relational Algebra (procedural)
• Five fundamental operators: σ, π, ×, −, ∪
• Three additional operators: ∩, ./, ÷

FIE 2003 – p.3/33

Division

Division is considered the most challenging of the
eight operators

Defined using three operators (π, −, and ×) and
six operations
Based on finding values that are not answers
Not easily expressed in SQL
A challenge to explain to students

Often an afterthought in database texts

But necessary to answer a specific type of query!

FIE 2003 – p.4/33

What Division Does

Division identifies the attribute values from a
relation that are found to be paired with all of the
values from another relation.

Viewed another way:
As multiplication is to division in arithmetic,
Cartesian Product (×) is to Division in relational
algebra.

FIE 2003 – p.5/33

Cartesian Product and Division

Consider the unary relations m and n , and their
Cartesian Product o :

m C

4

8

n D

3

1

7

o C D

4 3

4 1

4 7

8 3

8 1

8 7

FIE 2003 – p.6/33

Cartesian Product and Division

Division is the opposite of Cartesian Product:

o C D

4 3

4 1

4 7

8 3

8 1

8 7

o÷ n = m C

4

8

o÷m = n D

3

1

7

FIE 2003 – p.7/33

Cartesian Product and Division

Division is the opposite of Cartesian Product:

o C D

4 3

4 1

4 7

8 3

8 1

8 7

o÷ n = m C

4

8

o÷m = n D

3

1

7

That’s easy! Who needs a formal definition? :-)
FIE 2003 – p.7/33

A More Practical Example

Consider this subset of Date’s famous
Suppliers–Parts–Projects schema:

p pno pname color weight city

P1 Nut Red 12.0 London

.

P6 Cog Red 19.0 London

spj sno pno jno qty

S1 P1 J1 200

.

S5 P6 J4 500
FIE 2003 – p.8/33

A More Practical Example (cont.)

Query: Find the sno values of the suppliers that supply all
parts of weight equal to 17.

p pno pname color weight city

spj sno pno jno qty

FIE 2003 – p.9/33

A More Practical Example (cont.)

Query: Find the sno values of the suppliers that supply all
parts of weight equal to 17.

p pno pname color weight city

spj sno pno jno qty

Students can tell us that we need to create this
schema:

α sno pno β pno

FIE 2003 – p.9/33

A More Practical Example (cont.)

Constructing α and β is straight–forward:
α← πsno,pno(SPJ) and β ← πpno(σweight=17(P))

α sno pno β pno

S1 P1 P2

S2 P3 P3

S2 P5

S3 P3

S3 P4

S4 P6

S5 P1

S5 P2

S5 P3

S5 P4

S5 P5

S5 P6
FIE 2003 – p.10/33

Division in Relational Algebra

Idea: Find the values that do not belong in the answer, and
remove them from the list of possible answers.

In our P–SPJ example, the list of possible answers is
just the available sno values in α:

πsno(α) sno
S1
S2
S3
S4
S5

FIE 2003 – p.11/33

Division in Relational Algebra (cont.)

All possible sno–pno pairings can be generated
easily:

π
sno

(α) sno β pno γ sno pno

S1 P2 S1 P2

S2 × P3 = S1 P3

S3 S2 P2

S4 S2 P3

S5 S3 P2

S3 P3

S4 P2

S4 P3

S5 P2

S5 P3

FIE 2003 – p.12/33

Division in Relational Algebra (cont.)

If we remove from γ all of the pairings also found
in α , the result will the values of sno that we do not
want.

See next slide!

FIE 2003 – p.13/33

Division in Relational Algebra (cont.)

γ sno pno α sno pno δ sno pno

S1 P2 S1 P1 S1 P2

S1 P3 – S2 P3 = S1 P3

S2 P2 S2 P5 S2 P2

S2 P3 S3 P3 S3 P2

S3 P2 S3 P4 S4 P2

S3 P3 S4 P6 S4 P3

S4 P2 S5 P1

S4 P3 S5 P2

S5 P2 S5 P3

S5 P3 S5 P4

S5 P5

S5 P6

Note that S5 is not represented in δ .

Victim tuples
are shown in magenta.

FIE 2003 – p.14/33

Division in Relational Algebra (cont.)

All that remains is to remove the ‘non–answer’ sno
values from the set of possible answers:

πsno(α) sno πsno(δ) sno ÷ sno

S1 S1 S5

S2 – S2 =

S3 S3

S4 S4

S5

FIE 2003 – p.15/33

Relational Algebra Summary

The complete division expression:

α÷ β = πA−B(α)− πA−B((πA−B(α)× β)− α)

3 1 2

Ignoring the projections, there are just three steps:
1. Compute all possible attribute pairings
2. Remove the existing pairings
3. Remove the non–answers from the possible

answers

This is well within the grasp of DB students!

FIE 2003 – p.16/33

Moving On to SQL

Most DB texts cover division when they cover
Relational Algebra

But they often ignore/hide it in their SQL
coverage!
Leaves students believing division isn’t
important — not good!

Why do they overlook division in SQL?
No built–in division operator
Standard SQL expressions of division are
complex

Division in SQL need not be confusing

FIE 2003 – p.17/33

Expressing Division in SQL

I know of four ways to do division in SQL...

1. Direct conversion of the Relational Algebra
expression

2. By applying a quantification tautology
3. By using set containment
4. By comparing set cardinalities

... but books frequently choose to use 2 — the hard
one!

FIE 2003 – p.18/33

#1: From Relational Algebra

Recall the Relational Algebra formulation:

α÷ β = πA−B(α)− πA−B((πA−B(α)× β)− α)

We need to know that in SQL . . .
. . .EXCEPT means difference (–)
. . . a join without the WHERE clause produces a
Cartesian Product
. . . nested SELECTs sometimes need an alias
. . .(SELECT ...) as alias . . .

FIE 2003 – p.19/33

#1: From Relational Algebra (cont.)

The direct translation from Relational Algebra:

α÷ β = πA−B(α)− πA−B((πA−B(α)× β)− α)

select distinct sno from spj

except

select sno

from (select sno, pno

from (select sno from spj) as t1,

(select pno from p where weight=17) as t2

except

select sno, pno from spj

) as t3;

where α would be select sno, pno from spj

and β is select pno from p where weight=17FIE 2003 – p.20/33

#2: By Logical Tautology

Consider our original English P–SPJ query:

Find the sno values of the suppliers that supply all
parts of weight equal to 17.

Now consider this rewording that makes the
quantifications more explicit:

Find the sno values such that for all parts of weight
17 there exist suppliers that supply them all

Problem: For this we need ∀a(∃b f(a, b)), but SQL
does not support universal quantification.

FIE 2003 – p.21/33

#2: By Logical Tautology (cont.)

Solution: We can apply this tautology:

∀a(∃b f(a, b))↔ ∃a(∃b f(a, b))

Wording before conversion:

Find the sno values such that for all parts of weight
17 there exist suppliers that supply them all

Wording after conversion:

Find sno values such that there do not exist any
parts of weight 17 for which there do not exist any
suppliers that supply them all

FIE 2003 – p.22/33

#2: By Logical Tautology (cont.)

The resulting SQL version (with intentional
misspellings of ‘local’ and ’global’):

select distinct sno from spj as globl

where not exists

(select pno from p

where weight = 17 and not exists

(select * from spj as locl

where locl.pno = p.pno

and locl.sno = globl.sno));

Imagine presenting this to undergrads who have just
a lecture or two of SQL under their belts.

You do get the chance to talk about scoping of
aliases...

FIE 2003 – p.23/33

#3: Set Containment

Consider this: If a supplier supplies a superset of the
parts of weight 17, the supplier supplies them all.

If only SQL had a superset (containment)
operator...

FIE 2003 – p.24/33

#3: Set Containment

Consider this: If a supplier supplies a superset of the
parts of weight 17, the supplier supplies them all.

If only SQL had a superset (containment)
operator...

Logic to the rescue!

If A ⊇ B, B − A will be empty (or, ∃(B − A))

where
A contains the parts of weight 17 that a supplier
supplies
B contains all available parts of weight 17.

FIE 2003 – p.24/33

#3: Set Containment (cont.)

The resulting SQL query scans through the sno
values, computes A based on the current sno, and
includes it in the quotient if the difference is empty:

select distinct sno from spj as globl

where not exists (

(select pno from p where weight = 17)

except

(select p.pno

from p, spj

where p.pno = spj.pno

and spj.sno = globl.sno)

);

The lack of a double negation makes this approach
easier to understand.

FIE 2003 – p.25/33

#4: A Counting We Will Go

The effect of the set containment approach is to
indirectly count the members of each of the two sets,
in hopes that the sums are equal.

Thanks to SQL’s count(), we can do the counting
directly.

The plan:
We find the suppliers that supply parts of weight
17 and how many of those parts each supplies.
A having clause compares each count to the
total number of parts of weight 17.

FIE 2003 – p.26/33

#4: A Counting We Will Go (cont.)

The resulting SQL query:

select distinct sno

from spj, p

where spj.pno = p.pno and weight = 17

group by sno

having count(distinct p.pno) =

(select count (distinct pno)

from p

where weight = 17);

No negations at all!

Not surprisingly, students like it quite well.

FIE 2003 – p.27/33

Two Division Pitfalls

1. As “All” / “For All” queries need division, does that
mean division ≡ ∀ ? No!

Consider this query:
What are the names of the students taking all of
the Computer Science seminar classes?

We need operand relations like these:

enroll name class seminar class

But . . . what if seminar is empty?

FIE 2003 – p.28/33

Two Division Pitfalls (cont.)

1. (cont.)
One can say that, if no seminar classes are
offered, then all students are taking all seminars!
Of course, the real meaning of the query was:
What are the names of the students taking all of
the Computer Science seminar classes,
assuming that at least one is being offered?

Students need to realize that the divisor . . .
. . . is usually the result of a subquery, and
. . . may well contain no tuples

FIE 2003 – p.29/33

Two Division Pitfalls (cont.)

2. Queries that give the same result as division are not
replacements for division

Consider this variation of our ‘all parts of weight
17’ query:
Find the sno values of the suppliers that supply
all parts of weight equal to 19.
If students inspect Date’s sample data, they learn
the answer is suppliers S4 and S5 . . .
. . . which also is the result of this query:
Find the sno values of the suppliers that
supply parts of weight equal to 19.

FIE 2003 – p.30/33

Two Division Pitfalls (cont.)

2. (cont.)
That query can be answered with a simple join of
the division operands:

select distinct sno

from (select sno, pno from spj) as one,

(select pno from p where weight = 19) as two

where one.pno = two.pno;

To help students avoid temptation, select a
divisor relation that contains more than one tuple.

Only one part has weight 19, but two parts
have weight 17.
Attempting the join on the ‘weight 17’ query
would produce S2, S3, and S5 — all three
supply at least one of the parts of weight 17.

FIE 2003 – p.31/33

Conclusion

Division is as important in SQL as it is in Relational
Algebra

Students can understand division in both languages
if we give them a chance

A variety of possible implementations of division
are possible in SQL

Looking for shortcuts to division doesn’t work

FIE 2003 – p.32/33

Any Questions?

This full–screen PDF presentation was created in LATEX using the prosper presentation class.
FIE 2003 – p.33/33

	Outline
	Background
	Division
	What Division Does
	Cartesian Product and Division
	Cartesian Product and Division
	A More Practical Example
	A More Practical Example (cont.)
	A More Practical Example (cont.)
	Division in Relational Algebra
	Division in Relational Algebra (cont.)
	Division in Relational Algebra (cont.)
	Division in Relational Algebra (cont.)
	Division in Relational Algebra (cont.)
	Relational Algebra Summary
	Moving On to SQL
	Expressing Division in SQL
	#1: From Relational Algebra
	#1: From Relational Algebra (cont.)
	#2: By Logical Tautology
	#2: By Logical Tautology (cont.)
	#2: By Logical Tautology (cont.)
	#3: Set Containment
	#3: Set Containment (cont.)
	#4: A Counting We Will Go
	#4: A Counting We Will Go (cont.)
	Two Division Pitfalls
	Two Division Pitfalls (cont.)
	Two Division Pitfalls (cont.)
	Two Division Pitfalls (cont.)
	Conclusion
	Any Questions?

