
    Assignment 1 
 
CS314 – Operating Systems 
 
This project was adapted from Gary Nutt’s Excellent Book “Kernel Projects for 
Linux” published by Addison-Wesley 2001. 

You will learn how to write a UNIX shell program. This will give you the opportunity to learn how child 
processes are created to perform large-grained work and how the parent process can follow up on a child 
process's work. 

INTRODUCTION   

A shell, or command line interpreter program, is a mechanism with which each interactive user can send 
commands to the OS and by which the OS can respond to the user. Whenever a user has successfully 
logged in to the computer, the OS causes the user process assigned to the login port to execute a specific 
shell. The OS does not ordinarily have a built-in window interface. Instead, it assumes a simple character--
oriented interface in which the user types a string of characters (terminated by pressing the Enter or 
Return key) and the OS responds by typing lines of characters back to the screen. If the human-computer 
interface is to be a graphical windows interface, then the software that implements the window manager 
subsumes the shell tasks that are the focus of this exercise. Thus the character-oriented shell assumes a 
screen display with a fixed number of lines (usually 25) and a fixed number of characters (usually 80) per 
line. 

Once the shell has initialized its data structures and is ready to start work, it clears the 25-line display and 
prints a prompt in the first few character positions on the first line. Linux systems are usually configured to 
include the machine name as part of the prompt. For example, my Linux machine is named 
kiowa.cs.colorado.edu, so the shell prints, as its prompt string: 

kiowa>  

or 

bash> 

 
depending on which shell I am using. The shell then waits for the user to type a command line in response 
to the prompt. The command line could be a string such as: 

kiowa> ls –al 

 
terminated with an <ENTER> or return character (in Linux, this character is represented internally by the 
NEWLINE character, '\n'). When the user enters a command line, the shell's job is to cause the OS to 
execute the command embedded in the command line.   



Every shell has its own language syntax and semantics. In the standard Linux shell, bash, a command line 
has the form: 

command [arg1] [arg2] ... [argN] 

 
in which the first word is the command to be executed and the remaining words are arguments expected 
by that command. The number of arguments depends on which command is being executed. For example, 
the directory listing command may have no arguments-simply by the user's typing “ls” or it may have 
arguments prefaced by the negative “-“ character, as in “ls –al”, where “a” and “l” are arguments. The 
command determines the syntax for the arguments, such as which of the arguments may be grouped (as 
for the “a” and “l” in the “ls” command), which arguments must be preceded by a "-" character, and 
whether the position of the argument is important. 
 
Other commands use a different argument-passing syntax. For example, a g++ compiler command might 
look like: 

kiowa> g++ -g -o deviation -S main.cpp inout.cpp –lmath 

in which the arguments g, o deviation, S, main.cpp, inout.cpp, and lmath are all passed to 
the C++ compiler, g++. 

The shell relies on an important convention to accomplish its task: The command for the command line is 
usually the name of a file that contains an executable program, for example, “ls” and “g++” (files stored in 
/bin on most UNIX-style machines). In a few cases, the command is not a filename but rather a 
command that is implemented within the shell. For example, “cd” (change directory) is usually 
implemented within the shell itself rather than in a file in /bin. Because the vast majority of the commands 
are implemented in files, you can think of the command as actually being a filename in some directory on 
the machine. This means that the shell's job is to: 

1 - find the file 

2 - prepare the list of parameters for the command,  

3 - cause the command to be executed using the parameters. 

Many shell programs are used with UNIX variants, including the original Bourne shell (sh), the C shell 
(csh) with its additional features over sh, the Korn shell, and the standard Linux shell (bash). All have 
followed a similar set of rules for command line syntax, though each has a superset of features. 
 
Basic UNIX-Style Shell Operation 
The Bourne shell is described in Ritchie and Thompson's original UNIX paper [Ritchie and Thompson, 
1974]. As described in the previous subsection, the shell should accept a command line from the user, 
parse the command line, and then invoke the OS to run the specified command with the specified argu-
ments. This command line is a request to execute the program in any file that contains a program, 
including programs that the user wrote. Thus a programmer can write an ordinary C program, compile it, 
and have the shell execute it just like it was a UNIX command. 

For example, suppose that you write a C++ program in a file named main.cpp and then compile and 
execute it with shell commands such as: 

kiowa> g++ -c –I. –o main.o main.cpp  

kiowa> g++ -o main.o main 

kiowa> ./main 



For the first command line, the shell will find the g++ command (the C++ compiler) in the /bin directory and 
then, when the g++ command is executed, pass it the string main.cpp. The C++ compiler will translate 
the C++ program that is stored in main.cpp and write the resulting object file named main.o in the current 
directory. The next command links the object file into an executable.  The third command is simply the 
name of the file to be executed, main, without any parameters. The shell finds the main file in the current 
directory and then executes it. 

Consider the following steps that a shell must take to accomplish its job. 

1. Print a prompt. 
 
A default prompt string is available, sometimes hardcoded into the shell, for example the single 
character string %, #, or >. When the shell is started, it can look up the name of the machine on 
which it is running and prepend this string to the standard prompt character, for example a prompt 
string such as kiowa>. The shell also can be designed to print the current directory as part of the 
prompt, meaning that each time that the user types cd to change to a different directory, the prompt 
string is redefined. Once the prompt string is determined, the shell prints it to stdout whenever it is 
ready to accept a command line. 
 

2. Get the command line. 
 

To get a command line, the shell performs a blocking keyboard input operation so that the process that 
executes the shell will be asleep until the user types a command line in response to the prompt. Once 
the user types the command line (and terminates it with a NEWLINE ('\n') character), the command 
line string is returned to the shell. 

 
3. Parse the command. 
 

The syntax for the command line is trivial. The parser begins at the left side of the command line and 
scans until it sees a whitespace character (such as space, tab, or NEWLINE). The first word is the 
command name, and subsequent words are the parameters. 

 
4. Find the file. 
 

The shell provides a set of environment variables for each user. These variables are first defined in the 
user's Iogin file (for the bash shell this is /home/<username>/.bashrc) but they can be modified at 
any time by using the set command. The PATH environment variable (whose value can be viewed by 
typing “echo $PATH” at the bash shell) is an ordered list of absolute pathnames specifying where the 
shell should search for command files. If the Iogin file has a line such as: 

set path=(.:/bin:/usr/bin) 

 
then the shell will first look in the current directory (since the first full pathname is ":."), then in /bin, 
and finally in /usr/bin. If no file with the same name as the command can be found in any of the 
specified directories, then the shell notifies the user that it is unable to find the command. 
 

5. Prepare the parameters. The shell simply passes the parameters to the command as the argv 
array of pointers to strings. 



 
6. Execute the command.  

 
The shell must execute the executable program in the specified file. UNIX shells have always 
been designed to protect the original process from crashing when it executes a program. 
That is, since a command can be any executable file, then the process that is executing the 
shell must protect itself in case the executable file contains a fatal error. Somehow, the shell 
wants to launch the executable so that even if the executable contains a fatal error (which 
destroys the process executing it), then the shell will remain unharmed.  

 
The Bourne shell uses multiple processes to accomplish this by using the UNIX-style system calls 
fork(), execvp(), and wait(). 

fork() 

The fork() system call creates a new process that is a copy of the calling process, except that it 
has its own copy of the memory, its own process ID (with the correct relationships to other 
processes), and its own pointers to shared kernel entities such as file descriptors. After fork() has 
been called, two processes will execute the next statement after the fork() in their own address 
spaces: the parent and the child. If the call succeeds, then in the parent process fork() returns the 
process ID of the newly created child process and in the child process, fork() returns a zero value. 

execvp() 

The execvp() system call changes the program that a process is currently executing. It has the 
form: 

execvp(char* path, char* argv[]); 

The path argument is the pathname of a file that contains the new program to be executed. The 
argv[] array is a list of parameter strings.  When a process encounters the execvp() system 
call, the next instruction it executes will be the one at the entry point of the new executable file. 
Thus the kernel performs a considerable amount of work in this system call. It must: 

 
- find the new executable file, 
 
- load the file into the address space currently being used by the calling process (overwriting and 

discarding the previous program), 
 

- set the argv array and environment variables for the new program execution, and start the process 
executing at the new program's entry point. 

Various versions of execvp() are available at the system call interface, differing in the way that 
parameters are specified (for example, some use a full pathname for the executable file and others do 
not). 
 
wait() 

The wait() system call is used by a process to block itself until the kernel signals the process to execute 
again, for example because one of its child processes has terminated. When the wait() call returns as a 
result of a child process's terminating, the status of the terminated child is returned as a parameter to the 
calling process. 



When these three system calls are used, here is the code skeleton that a shell might use to execute a 
command: 
 
      // Child 
 if (fork() == 0) 
 { 
  execvp(fullpathname, argv); 
 } 
 // Parent 
 else 
 { 
  int status=0; 
  wait(&status); 
  cout << "Child exited with status of " << status << endl; 
 } 
 
 
Putting a Process in the Background 
In the normal paradigm for executing a command, the parent process creates a child process, starts it 
executing the command, and then waits until the child process terminates. If the "and" ("&") operator is 
used to terminate the command line, then the shell is expected to create the child process and start it ex-
ecuting on the designated command but not have the parent wait for the child to terminate. That is, the 
parent and the child will execute concurrently. While the child executes the command, the parent prints 
another prompt to stdout and waits for the user to enter another command line. If the user starts several 
commands, each terminated by an "&", and each takes a relatively long time to execute, then many 
processes can be running at the same time. 

When a child process is created and started executing on its own program, both the child and the parent 
expect their stdin stream to come from the user via the keyboard and for their stdout stream to be 
written to the character terminal display. Notice that if multiple child processes are running concurrently 
and all expect the keyboard to define their stdin stream, then the user will not know which child process 
will receive data on its stdin if data is typed to the keyboard. Similarly, if any of the concurrent processes 
write characters to stdout, those characters will be written to the terminal display wherever the cursor 
happens to be positioned. The kernel makes no provision for giving each child process its own keyboard or 
terminal (unlike a windows system, which controls the multiplexing and demultiplexing through explicit user 
actions). 

 
I/O Redirection 
A process, when created, has three default file identifiers: stdin, stdout, and stderr.  These three file 
identifiers correspond to the C++ objects cin, cout, and cerr. If the process reads from stdin (using 
cin) then the data that it receives will be directed from the keyboard to the stdin file descriptor. Similarly, 
data received from stdout (using cout) and stderr  (using cerr) are mapped to the terminal display. 

The user can redefine stdin or stdout whenever a command is entered. If the user provides a filename 
argument to the command and precedes the filename with a “less than” character "<” then the shell will 
substitute the designated file for stdin; this is called redirecting the input from the designated file. 



The user can redirect the output (for the execution of a single command) by preceding a filename with the 
right angular brace character, ">" character. For example, a command such as 

kiowa> we < main.cpp > program.stats 
 
will create a child process to execute the “we” command. Before it launches the command, however, it will 
redirect stdin so that it reads the input stream from the file main.cpp and redirect stdout so that it 
writes the output stream to the file program.stats. 

The shell can redirect I/O by manipulating the child process's file descriptors. A newly created child 
process inherits the open file descriptors of its parent, specifically the same keyboard for stdin and the 
terminal display for stdout and stderr. (This expands on why concurrent processes read and write the 
same keyboard and display.) The shell can change the child's file descriptors so that it reads and writes to 
files rather than to the keyboard and display. 

Each process has its own file descriptor table in the kernel.  When the process is created, the first entry in 
this table, by convention, refers to the keyboard (stdin) and the second two refer to the terminal display. 
 
Next, the C++ runtime environment and the kernel manage stdin, stdout, and stderr so that: 
 
C++ Object Name Alternative Linux 

Name 
File Descriptor 
Table Index 

Device Referred 
To 

cin stdin 0 Keyboard 
cout stdout 1 Terminal Display 
cerr stderr 2 Terminal Display 

If you want to perform I/O redirection, you need to connect stdin to a file which can be read for input 
instead of the keyboard, or stdout to a file which can accept output instead of the terminal display. 

Let’s consider stdin specifically.  The key to getting I/O redirection to work for stdin is to replace the 
contents of the file descriptor entry for stdin, currently the keyboard, with the file descriptor entry for the 
file you want to use for input. 

To accomplish this, you need to access the file descriptors for stdin and the file you want to read from.  
You know how to get the file descriptor for stdin, that’s just the number “0”.  But how do you get the file 
descriptor for the file you want to use for input?  Unfortunately, you can’t get the file descriptor directly from 
a C++ ifstream object.  Instead you have to issue the following Linux system call: 

int newstdin = open(“main.cpp”,O_RDONLY); 

The second argument to the open() call is an “open this file for reading only” flag.  Now newstdin has a file 
descriptor for the file “main.cpp”. 

Next you have to replace the contents of the stdin file descriptor with the “main.cpp” file descriptor.  Use 
the following sequence of Linux system calls: 

 
close(0); 
dup(newstdin); 
close(newstdin); 

The close(0) call wipes out the contents of file descriptor table entry 0, which is the table entry for stdin.  
The dup(newstdin) call copies the contents of the newstdin file descriptor table entry to the first empty table 
entry in the file descriptor table.  In this case, that will be entry 0.  Now stdin is will use the file “main.cpp” 
instead of the keyboard for input.  There are now two file descriptors which are linked to “main.cpp”.  The 
final close(newstdin) cleans things up so that only the stdin file descriptor is linked to main.cpp. 



A similar set of calls is used if you want to redirect stdout to an output file: 
 

int newstdout = open(“program.stats”,O_WRONLY|O_CREAT,S_IRWXU|S_IRWXG|S_IRWXO); 
 
close(1); 
dup(newstdout); 
close(newstdout); 

 
Make sure that when you use this open call you include ALL of the flags I’ve listed here.  Otherwise the 
redirection won’t work. 
 
Shell Pipes 

The pipe is a common IPC mechanism in Linux and other versions of UNIX. By default, a pipe employs 
asynchronous send and blocking receive operations. Optionally, the blocking receive operation may be 
changed to be a nonblocking receive. Pipes are FIFO (first-in/first out) buffers designed with an API that 
resembles as closely as possible a low level file I/O interface. A pipe may contain a system-defined 
maximum number of bytes at any given time, usually 4KB. As indicated in Figure 2.2, a process can send 
data by writing it into one end of the pipe and another can receive the data by reading the other end of the 
pipe. 

 
Information Flow Through a Pipe  

 
A pipe is represented in the kernel by a file descriptor, just like a file. A process that wants to create a pipe 
calls the kernel with a call of the following form: 
 

int thePipe[2];  
pipe(thePipe); 

 
The kernel creates the pipe as a kernel FIFO data structure with two file identifiers. In this example code, 
thePipe[0] is a file pointer (an index into the process's open file table) to the read end of the pipe and 
thePipe[1] is file pointer to the write end of the pipe. 

For two or more processes to use pipes for IPC (interprocess communication), a common ancestor of the 
processes must create the pipe prior to creating the processes. Because the fork() command creates a 
child that contains a copy of the open file table (that is, the child has access to all of the files that the 
parent has already opened), the child inherits the pipes that the parent created. To use a pipe, it needs 
only to read and write the proper file descriptors. 

For example, suppose that a parent creates a pipe. It then can create a child and communicate with it by 
using a code fragment such as the following: 
 



int pid; 
int thePipe[2]; 
 
pipe(thePipe); 
pid = fork(); 
 
// Parent 
if(pid > 0) 
{ 
 char message="Hello"; 
 char messageLen=6; 
 write(thePipe[1], message, messageLen); 
 cout << "Parent sent: " << message << endl; 
} 
// Child 
else if (pid == 0) 
{ 
 char message[6]; 
 int  messageLen=6; 
 read(thePipe[0], message, messageLen); 
 cout << "Child received: " << message << endl; 
} 

Pipes enable processes to copy information from one address space to another by using the UNIX file 
model. The pipe read and write ends can be used in most system calls in the same way as a file 
descriptor. Further, the information written to and read from the pipe is a byte stream. UNIX pipes do not 
explicitly support messages, though two processes can establish their own protocol to provide structured 
messages. Also, library routines are available that can be used with a pipe to communicate via messages. 

A process that does not intend to use a pipe end should close so that end-of-file (EOF) conditions can be 
detected. 

A named pipe can be used to allow unrelated processes to communicate with each other. Typically in 
pipes, the children inherit the pipe ends as open file descriptors. In named pipes, a process obtains a pipe 
end by using a string that is analogous to a filename but that is associated with a pipe. This allows any set 
of processes to exchange information by using a public pipe whose end names are filenames. When a 
process uses a named pipe, the pipe is a system-wide resource, potentially accessible by any process. 
Just as files must be managed so that they are not inadvertently shared among many processes at one 
time, named pipes must be managed, by using low level file system commands. 



Problem A 
Write a C++ program that will act as a shell command line interpreter for the Linux kernel. Your shell 
program should use the same style as the bash shell for running programs. In particular, when the user 
types a line such as: 

$ command [parameter1] .... [parameterN] 

your shell should parse the command line to build argv. It should search the directory system (in the order 
specified by the PATH environment variable) for a file with the same name as the first identifier (which may 
be a relative filename or a full pathname). If the file is found, then it should be executed with the optional 
parameter list, as is done with bash.  If the file is not found, then an error should be printed. 

Use the execvp() system call to execute the file that contains the command. You will also need to 
become familiar with the Linux fork() and wait() functions. 

When the command has completed executing, your shell should prompt the user for another command. 

Here’s an example of the shell running a simple hello world program followed by the “ls” command: 

BobShell> ./main 
Hello World! 
 
BobShell> ls 
main.cpp main.o main makefile 

BobShell> 

Attacking Problem A 

The exercise introduction generally describes how a shell behaves. It also implicitly provides a plan of 
attack, summarized here. This plan describes several debugging versions that you can use for Part A, then 
apply to the other parts as required. 

1. Organize the shell to initialize variables and then to perform an endless loop until the shell detects an 
EOF condition.  When you are reading from stdin, an EOF condition can be: 

- CTRL-D character typed 
- Keyword “exit” typed 

Develop a very simple version that prints the prompt character and then waits for the user to type a 
command. After it reads the command, it should print the command to stdout. 

2. Refine your simple shell so that it parses the command typed by the user. The parser should do the 
following: 

- Convert each distinct string in the command into a C-String 
- Store the number of strings in the command in the integer variable argc 
- Store the C-Strings in an array of character pointers declared like this: 

char* argv[100]; 



- Set the first location in the array after your C-Strings to NULL.  You are going to pass the argv 
array to the execvp() system call.  This system call does NOT take argc as an argument, but the 
call still needs to detect the end of the argv array.  To detect the end of the argv array, execvp 
looks for the first array entry that has the value of NULL. 

3. In the next debug version, use argv[0] to find the executable file. In this version, simply print the 
filename. 

- Construct a simple version that can find only command files that are in the current directory. 
- Enhance your program so that it can find command files that are specified with an absolute 

pathname. 
- Enable your program to search directories according to the string that is stored in the shell PATH 

environment variable.  You can access all of the environment variables by adding the following two 
lines before main() in your program: 

#include <unistd.h> 
extern char *environ[]; 

 The last item in the array is a NULL C-String. 

3. Create a child process to execute the command.  

#include <iostream> 

using namespace std;  //introduces namespace std 
 
int main( void ) 
{ 
  string theLine; 
  int    argc; 
  char*  argv[100]; 
 
  // Initialization stuff 
 
  while (true) 
  { 
    cout << "BobShell> "; 
 
    getline(cin,theLine); 
    cout << "Command was: " << theLine << endl; 
  
    if ((theLine == "exit") || cin.eof()) 
    { 
  exit(0); 
    } 
 
 // Determine the command name, and construct the parameter list 
 // argv[0]   - command name 
 // argv[1]   - first parameter 
 // argv[2]   - second parameter 
 // ... 
 // argv[N]   - Nth parameter 
 // argv[N+1] - NULL to indicate end of parameter list 
 
 // Find the full path name for the file 



 
 // Launch the executable file with the specified parameters using 
 // the execvp command and the argv array. 

} 

Determining the Command Name and the Parameter List 

A program might be run from your shell with the command: 

BobShell> ./main foo 100 

Before calling execvp() you need to set up the argv array so that, argv[0] will point to the C-String “main”, 
argv[1] will point to “foo”, argv[2] will point to the string “100”, and argv[3] will be set to NULL to indicate the 
end of elements in the argv array. Your program then can interpret the first parameter (argv[1]) as, say, a 
filename, and the second parameter (argv[2]) as, say, an integer record count.  

The shell would simply treat the first word on the command line as a filename and the remaining words as 
strings. 

Finding the Full Pathname 

The user might have provided a full pathname as the command name word or only a relative pathname 
that is to be bound according to the value of the PATH environment variable. A name that begins with a "/" 
"./" or "../" is an absolute pathname that can be used to launch the execution. Otherwise, your program 
must search each directory in the list specified by the PATH environment variable to find the relative 
pathname. 

You can figure out if the file exists in a particular directory by trying to open the file.  If the open fails, then 
the file does not exist. 

Launching the Command 

The final step in executing the command is to fork a child process to execute the specified command and 
then to cause the child to execute that command. The following code skeleton will accomplish this. 

// Child 
if (fork() == 0) 
{ 
 execvp(<fullpathnameofcommand>, argv); 
} 
// Parent 
else 
{ 
 int status=0; 
 wait(&status); 
 cout << "Child exited with status of " << status << endl; 
} 

 

 



 

Problem B 
Add functionality to the shell from Problem A so that a user can use the "&" operator as a command 
terminator. A command terminated with "&" should be executed concurrently with the shell (rather than the 
shell's waiting for the child to terminate before it prompts the user for another command). 

Problem C 
Modify your shell program so that the user can redirect the stdin or stdout file descriptors by using the "<" 
and ">" characters as filename pre-fixes.  For example: 

BobShell> ./main > out.txt 
BobShell> cat out.txt 
Hello World! 
BobShell> 

will place the output of the “Hello World” program into the file “out.txt” rather than sending it to the 
screen (which is stdout). 

Also, allow your user to use the pipe operator, "I", to execute two processes concurrently, with stdout from 
the first process being redirected as the stdin for the second process. For example: 

BobShell> cat out.txt 
Hello World! 
BobShell> cat out.txt | wc –l 
1 
BobShell> 

The cat command sends the contents of the “out.txt” file to stdout.  The “wc –l” command counts the 
number of characters, words, and lines typed into stdin.  The two commands can be strung together 
using the pipe operator “|” so that the output of cat (sent to stdout) is connected to the input of wc 
(received from stdin). 

You can design your program so that you only have to handle redirection OR pipes in one command line, 
but not both. 

Attacking Problem C 

Don’t worry about mixing the “&”, redirection operators (“<” and “>”), and pipe operator “|” in the same 
command. 

Concentrate on getting the redirection operators to work first.  The key to getting these to work is to 
understand the I/O Redirection discussion in this document. 

Watch out for file permission problems with the redirection operators.  I needed to bone up on the man 
pages for file() to get these flags correct.  The default permissions for the file open for write meant 
subsequent redirects to the same file didn't work of because permission problems. 

int newstdin = open(inputFileName.c_str(),O_RDONLY); 



int newstdout = open(outputFileName.c_str(),O_WRONLY|O_CREAT,S_IRWXU|S_IRWXG|S_IRWXO); 

To get command line pipes to work, re-read the Shell Pipes section carefully.  Since a pipe is just like a 
file... there’s no reason why you couldn’t use I/O Redirection and pipes together! 

1 - Have the parent create a pipe. 

2 - Spawn a child. 

3 - Have the parent redirect stdout to the write portion of the pipe. 

4 - Have the parent execute the first command with excecvp(). 

5 - Have the child redirect stdin to the read portion of the pipe. 

6 - Have the child execute the second command with execvp(). 

7 - The output from the parent command should flow to the child command via the pipe and i/o redirection 
you performed on the pipe. 

Watch out for (EOF) problems with pipes.  I couldn't get the child process to terminate on an eof condition 
because the parent didn't close the read portion of the pipe.  Make sure that for parent and child that you 
call the system call close() for any portion of a pipe you aren’t using. 

General Hints 

You should learn to use man pages to get info about important system calls.  Sometimes the man page I 
wanted didn't come up when I typed man <keyword>.  For example: 

      
               man wait 
    

gave me lots of information about the bash shell, not the system call wait.  But I could  
find out about wait by typing: 

 
               man 2 wait 
 

I figured this out by looking at the documentation.  If you see something like: 
   

              See also wait(2) 
 

It means use the syntax above. 
 
  

You should figure out how to get the error from a system call.  If a system call fails, you can find out WHY it 
failed in and English friendly way by calling strerror() with the global variable errno.  Add this to your code: 

 

    #include <errno.h> 
    #include <string.h> 
    extern int errno; 
    . . .  
    make a system call that fails 
    cout << strerror(errno) << endl; 
 

 



DELIVERABLES: 
 

- All the files necessary to compile, link, and run your program solutions.  The final 
program that you produce should allow me to test the solutions to A, B, and C. 

- Use a makefile to build your program so I can do the same thing when I build your 
program. 

- An ELECTRONIC document describing how to run the program you created.  Call 
this document README.TXT. 

- These files should be placed in a directory called “<username>assignment1”. 
- Use the tar command to place all the files in a single file called 

“<username>assignment1.tar” (e.g. tar –cvf bduganassignment1.tar bduganassignment1) 
- Upload your solution to elearn. 


