1 Administrivia

Announcements

Assignment

Look over Chapter 8.

From Last Time

Shift registers.

Outline

1. Ripple counters.
2. Synchronous counters.
3. VHDL.

Coming Up

Memory.

Counters

Tom Kelliher, CS 240
Apr. 30, 2010



2 Ripple Counters

The increment ripples — propagation delay problems.
Slow counters.

Basic idea:

|: D (60]
Clk o
|: D C1
o—
|: D Cc2
o—
|: D C3
o—

1. Each flip-flop’s !Q is fed back to D. What does this accomplish?
2. Flip-flop i’s !Q is used to clock flip-flop 7 + 1. What does this accomplish?

3. Trace the propagation delay of the clock if the count is currently 1111 and a rising
clock edge is applied.

4. Through what sequence, starting with 0000, does the counter count?

3 Synchronous Counters

1. All flip-flops receive same clock signal.



2. Still have some rippling. (Where?)

3. Inputs: clk, enable.

4. Outputs: count, carry output (for cascading).

5. After state table minimization, input equation for bit i:
Ci®(Co-Cy-...-Ci_1- EN)

6. One bit slice for serial gating:

EN Clk

XOR D Ci

7. Serial vs. parallel gating.

4 VHDL

32 bit up counter with enable and reset.

-- Up counter with enable and reset

-— Note how en must be handled after the flip-flop generating
—-— code.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity counter is

port (



clk, reset_n, en : in std_logic;
q : out std_logic_vector (31 downto 0);
co : out std_logic);

end counter;
architecture behavioral of counter is

signal count : std_logic_vector (31 downto 0);
begin -- behavioral

q <= count;

state: process (clk, reset_n)
begin -- process state
if reset_n = 0’ then
count <= X"00000000";
elsif clk’event and clk = ’1’ then
if en = 1’ then
count <= count + X"00000001";
end if;
end if;
end process state;

carry_out: process (count, en)

begin -- process carry_out
if count = X"FFFFFFFF" and en = ’1’ then
co <= ’17;
else
co <= ’0’;
end if;

end process carry_out;

end behavioral;



	Administrivia
	Ripple Counters
	Synchronous Counters
	VHDL

