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2 Ripple Counters

The increment ripples — propagation delay problems.
Slow counters.

Basic idea:
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1. Each flip-flop’s !Q is fed back to D. What does this accomplish?
2. Flip-flop i’s !Q is used to clock flip-flop 7 + 1. What does this accomplish?

3. Trace the propagation delay of the clock if the count is currently 1111 and a rising
clock edge is applied.

4. Through what sequence, starting with 0000, does the counter count?

3 Synchronous Counters

1. All flip-flops receive same clock signal.



2. Still have some rippling. (Where?)

3. Inputs: clk, enable.

4. Outputs: count, carry output (for cascading).

5. After state table minimization, input equation for bit i:
Ci®(Co-Cy-...-Ci_1- EN)

6. One bit slice for serial gating:

EN Clk

XOR D Ci

7. Serial vs. parallel gating.

4 VHDL

32 bit up counter with enable and reset.

-- Up counter with enable and reset

-— Note how en must be handled after the flip-flop generating
—-— code.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity counter is

port (



clk, reset_n, en : in std_logic;
q : out std_logic_vector (31 downto 0);
co : out std_logic);

end counter;
architecture behavioral of counter is

signal count : std_logic_vector (31 downto 0);
begin -- behavioral

q <= count;

state: process (clk, reset_n)
begin -- process state
if reset_n = 0’ then
count <= X"00000000";
elsif clk’event and clk = ’1’ then
if en = 1’ then
count <= count + X"00000001";
end if;
end if;
end process state;

carry_out: process (count, en)

begin -- process carry_out
if count = X"FFFFFFFF" and en = ’1’ then
co <= ’17;
else
co <= ’0’;
end if;

end process carry_out;

end behavioral;



	Administrivia
	Ripple Counters
	Synchronous Counters
	VHDL

