
Counters

Tom Kelliher, CS 240

Apr. 30, 2010

1 Administrivia

Announcements

Assignment

Look over Chapter 8.

From Last Time

Shift registers.

Outline

1. Ripple counters.

2. Synchronous counters.

3. VHDL.

Coming Up

Memory.

1



2 Ripple Counters

The increment ripples — propagation delay problems.

Slow counters.

Basic idea:

C3

D

D

D

D

Clk

C0

C1

C2

1. Each flip-flop’s !Q is fed back to D. What does this accomplish?

2. Flip-flop i’s !Q is used to clock flip-flop i + 1. What does this accomplish?

3. Trace the propagation delay of the clock if the count is currently 1111 and a rising
clock edge is applied.

4. Through what sequence, starting with 0000, does the counter count?

3 Synchronous Counters

1. All flip-flops receive same clock signal.

2



2. Still have some rippling. (Where?)

3. Inputs: clk, enable.

4. Outputs: count, carry output (for cascading).

5. After state table minimization, input equation for bit i:

Ci ⊕ (C0 · C1 · . . . · Ci−1 · EN)

6. One bit slice for serial gating:

CiDEXOR

*

EN Clk

7. Serial vs. parallel gating.

4 VHDL

32 bit up counter with enable and reset.

-- Up counter with enable and reset

--

-- Note how en must be handled after the flip-flop generating

-- code.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity counter is

port (

3



clk, reset_n, en : in std_logic;

q : out std_logic_vector (31 downto 0);

co : out std_logic);

end counter;

architecture behavioral of counter is

signal count : std_logic_vector (31 downto 0);

begin -- behavioral

q <= count;

state: process (clk, reset_n)

begin -- process state

if reset_n = ’0’ then

count <= X"00000000";

elsif clk’event and clk = ’1’ then

if en = ’1’ then

count <= count + X"00000001";

end if;

end if;

end process state;

carry_out: process (count, en)

begin -- process carry_out

if count = X"FFFFFFFF" and en = ’1’ then

co <= ’1’;

else

co <= ’0’;

end if;

end process carry_out;

end behavioral;

4


	Administrivia
	Ripple Counters
	Synchronous Counters
	VHDL

