Chapter 9: Virtual Memory

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

Administrivia

®m Next project: kernel modules, due April 17.
® Read: 9.5--9.10.

Operating System Concepts — 8" Edition 9.2 Silberschatz, Galvin and Gagne ©2009

Outline

= Virtual memory: background.

® Demand paging.

®m Page fault sequence.

= VM performance.

®m Process creation and copy-on-write.

®m Page replacement: concept and algorithms.

Operating System Concepts — 8t Edition 9.3 Silberschatz, Galvin and Gagne ©2009

Background

= Virtual memory — separation of user logical memory from physical memory.
e Only part of the program needs to be in memory for execution

* Logical address space can therefore be much larger than physical
address space

* Allows address spaces to be shared by several processes
* Allows for more efficient process creation

= Virtual memory can be implemented via:
* Demand paging
* Demand segmentation

Operating System Concepts — 8" Edition 9.4 Silberschatz, Galvin and Gagne ©2009

Virtual Memory That is Larger Than Physical Memory

page 0
page 1
page 2 P e
e 00
| H B
\ - N EEE
HER
~——p o E
EEN
ot -
page v physical
virtual R
memory

Virtual-address Space

Operating System Concepts — 8" Edition

Max

stack

heap

data

code

9.6

Silberschatz, Galvin and Gagne ©2009

Shared Library Using Virtual Memory

stack stack
l - . l
shared library Egg;id shared library
A \\‘\ f’,f A
heap heap
data data
code code

Operating System Concepts — 8 Edition 9.7 Silberschatz, Galvin and Gagne ©2009

Demand Paging

® Bring a page into memory only when it is needed
* Less I/O needed
* Less memory needed
* Faster response

* More users

® Page is needed [reference to it
* invalid reference I abort
* not-in-memory [0 bring to memory

® |azy swapper — never swaps a page into memory unless page will be
needed

* Swapper that deals with pages is a pager

Valid-Invalid Bit

With each page table entry a valid—invalid bit is associated
(v O in-memory, i J not-in-memory)

= [nitially valid—invalid bit is set to i on all entries
= Example of a page table snapshot:

Frame # valid-invalid bit

page table

®m During address translation, if valid—invalid bit in page table entry

is | 00 page fault

Operating System Concepts — 8" Edition 9.9 Silberschatz, Galvin and Gagne ©2009

pwned 6y 133t haxor

Page Table When Some Pages Are Not in Main Memory

0
1
0 A 2
valid—invalid
1 B frame bi} 3 /\
N~ -
2 C ol 4 [v 4 A
3 D 1 i 5 H RN
| E Y o 1 G [
5 [N 4] i 7
519 |v IEI IEI
6 G 6 i 8
7 H 7 i 9 = E
lical page table 10
memory D D I:I
11
v
12
13
14
15

physical memory

Operating System Concepts — 8t Edition 9.11 Silberschatz, Galvin and Gagne ©2009

Page Fault

m |f there is a reference to a page, first reference to that page will
trap to operating system:

page fault
3. Operating system looks at another table to decide:
e Invalid reference [J abort
e Just not in memory
Get empty frame
Swap page into frame
Reset tables
Set validation bit = v
8. Restart the instruction that caused the page fault

o O &

Operating System Concepts — 8 Edition 9.12 Silberschatz, Galvin and Gagne ©2009

Steps in Handling a Page Fault

page is on
backing store

3

load M

\v

operating
system
reference trap
< | | i
restart page table
instruction
free frame —
reset page bring in
table missing page
physical
memory
9.13 Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition

Performance of Demand Paging

B Page Fault Rate 0<p<1.0
* if p=0 no page faults

* if p=1, every reference is a fault

= Effective Access Time (EAT)
EAT = (1 — p) x memory access
+ p (page fault overhead
+ swap page out
+ swap page in
+ restart overhead

)

Operating System Concepts — 8" Edition 9.14 Silberschatz, Galvin and Gagne ©2009

Demand Paging Example

= Memory access time = 200 nanoseconds

® Average page-fault service time = 8 milliseconds

m EAT =(1-p) x 200 + p (8 milliseconds)
=(1—-p x200 + p x 8,000,000
=200 + p x 7,999,800

® |f one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.
This is a slowdown by a factor of 40!!

Process Creation

= Virtual memory allows other benefits during process creation:
- Copy-on-Write

- Memory-Mapped Files (later)

Copy-on-Write

® Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory

If either process modifies a shared page, only then is the page copied

= COW allows more efficient process creation as only modified pages are
copied

= Free pages are allocated from a pool of zeroed-out pages

Operating System Concepts — 8" Edition 9.17 Silberschatz, Galvin and Gagne ©2009

Before Process 1 Modifies Page C

physical
process; memory process,

—> pageA €«

- L page B €

— pageC —

After Process 1 Modifies Page C

physical
memory process,

process,

¥

M
e page B — |
page C —1]

— Copy of page C

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 9.19

What happens if there is no free frame?

®m Page replacement — find some page in memory, but not
really in use, swap it out
» algorithm
e performance — want an algorithm which will result in
minimum number of page faults

®m Same page may be brought into memory several times

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 9.20

Page Replacement

= Prevent over-allocation of memory by modifying page-fault service routine to
include page replacement

® Use modify (dirty) bit to reduce overhead of page transfers — only modified
pages are written to disk

®m Page replacement completes separation between logical memory and
physical memory — large virtual memory can be provided on a smaller
physical memory

Operating System Concepts — 8" Edition 9.21 Silberschatz, Galvin and Gagne ©2009

Need For Page Replacement

0 H frame
1| load M
PC —»
2 J
3 M
logical memory
for user 1
0 A frame
1 B
2 D
3 E

logical memory

for user 2

Operating System Concepts — 8" Edition

valid—invalid

N

bit

v

3

\"

4

5

v
v
i

page table
for user 1

valid—=invalid

N

bit

v

6

v

i

e

v

7

\Y

page table

for user 2

9.22

monitor

E

physical
memory

Silberschatz, Galvin and Gagne ©2009

Basic Page Replacement

* Find the location of the desired page on disk

* Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement
algorithm to select a victim frame

* Bring the desired page into the (newly) free frame;
update the page and frame tables

4. Restart the process

Page Replacement

frame valid—invalid bit

N Y

0O |1
flv
page table

change
to invalid

O

reset page
table for
new page

Operating System Concepts — 8" Edition

swap out
victim

victim
<:)swap
desired
page in
physical
memory
9.24

<
b 4

Silberschatz, Galvin and Gagne ©2009

Page Replacement Algorithms

= Want lowest page-fault rate

®m Evaluate algorithm by running it on a particular string of
memory references (reference string) and computing the
number of page faults on that string

® |n all our examples, the reference string is

1,2,3,4,1,2,5,1,2,3,4,5

Operating System Concepts — 8t Edition 9.25 Silberschatz, Galvin and Gagne ©2009

Graph of Page Faults Versus The Number of Frames

16
»n 14 \
5
8 12 \
Q
& 10
o
S 8
o)

2

1 5 3 4 5 6

number of frames

First-In-First-Out (FIFO) Algorithm

m Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

m 3 frames (3 pages can be in memory at a time per process)

® 4 frames

3
4

3

4

2
3

3 9 page faults

5 10 page faults

®m Belady’s Anomaly: more frames [more page faults

Operating System Concepts — 8" Edition

9.27

Silberschatz, Galvin and Gagne ©2009

Optimal Algorithm

®m Replace page that will not be used for longest period of time

® 4 frames example
1,2,3,4,1,2,5,1,2,3,4,5

6 page faults

A~ W DN

® How do you know this?
®m Used for measuring how well your algorithm performs

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 9.28

Least Recently Used (LRU) Algorithm

®m Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

1 1 1 1115

W | O N
W |~

2|2 2
3|5 4
41| 4 3

= Counter implementation

* Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

* When a page needs to be changed, look at the counters to
determine which are to change

Operating System Concepts — 8" Edition 9.29 Silberschatz, Galvin and Gagne ©2009

LRU Algorithm (Cont.)

®m Stack implementation — keep a stack of page numbers in a double link form:
* Page referenced:
> move it to the top
> requires 6 pointers to be changed
* No search for replacement

Use Of A Stack to Record The Most Recent Page References

reference string

4 v 0 7 1 0 1 2 1 2 7 1 2

a b
1 2
0 1
7 0
4 4
stack stack
before after
a b

LRU Approximation Algorithms

m Reference bit
» With each page associate a bit, initially = 0
* When page is referenced bit set to 1
* Replace the one which is 0 (if one exists)
» We do not know the order, however
® Second chance
* Need reference bit
* Clock replacement
* |f page to be replaced (in clock order) has reference bit = 1 then:
> set reference bit 0
» leave page in memory
» replace next page (in clock order), subject to same rules

Second-Chance (clock) Page-Replacement Algorithm

reference pages reference pages
bits h bits
0 0

victim

v v

v v
next 1 0

v v

v v

1 0
0 = 0
1 1
v v
1 1
circular queue of p:e_s/ circular queue of pa\gua_s/

(a) (b)

Operating System Concepts — 8" Edition 9.33 Silberschatz, Galvin and Gagne ©2009

Counting Algorithms

m Keep a counter of the number of references that have been
made to each page

= LFU Algorithm: replaces page with smallest count

= MFU Algorithm: based on the argument that the page with
the smallest count was probably just brought in and has yet to
be used

Operating System Concepts — 8" Edition 9.34 Silberschatz, Galvin and Gagne ©2009

