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= Friday: lab day.
=  For Monday: Read Chapter 4.

= Written assignment due Wednesday, Feb. 25 --- see web site.
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Outline

®  What is a process?

® How is a process represented?

®=  Process states.

®  Scheduling and context switches.
= Process creation/termination.

® |nterprocess communication, synchronization.




g5 Objectives
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= To introduce the notion of a process -- a program in
execution, which forms the basis of all computation

® To describe the various features of processes, including
scheduling, creation and termination, and communication
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Process Concept

®  An operating system executes a variety of programs:
» Batch system — jobs
* Time-shared systems — user programs or tasks
®m  Textbook uses the terms job and process almost interchangeably

®m  Process — a program in execution; process execution must
progress in sequential fashion

®m A process includes:
®* program counter
e stack
e data section
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o Process in Memory
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o Process State
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®m  As a process executes, it changes state
* new: The process is being created
* running: Instructions are being executed
e waiting: The process is waiting for some event to occur
e ready: The process is waiting to be assigned to a processor
e terminated: The process has finished execution
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> Diagram of Process State
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“»”’ Process Control Block (PCB)

Information associated with each process
= Process state

®  Program counter

®  CPU registers

®m  CPU scheduling information

= Memory-management information

®  Accounting information

® |/O status information
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“»”" Process Control Block (PCB)

Operating System Concepts — 8" Edition

process state

process number

program counter

registers

memory limits

list of open files

3.10

Silberschatz, Galvin and Gagne ©2009



/';%

“W” CPU Switch From Process to Process
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Process Scheduling Queues

=  Job queue — set of all processes in the system (PCB table)

®  Ready queue — set of all processes residing in main memory,
ready and waiting to execute

®m  Device queues — set of processes waiting for an I/O device
®  Processes migrate among the various queues
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%7/ Ready Queue And Various I/O Device Queues
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Q‘{?{'f Representation of Process Scheduling
| ready queue CPU :

I/O queue & |/Orequest &
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occurs interrupt
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g5 Schedulers

= Long-term scheduler (or job scheduler) — selects which
processes should be brought into the ready queue

= Short-term scheduler (or CPU scheduler) — selects which
process should be executed next and allocates CPU
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“%7 Addition of Medium Term Scheduling
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557 Schedulers (Cont)

®m  Short-term scheduler is invoked very frequently (milliseconds) [
(must be fast)

® | ong-term scheduler is invoked very infrequently (seconds,
minutes) O (may be slow)

®  The long-term scheduler controls the degree of multiprogramming
B Processes can be described as either:

* |/O-bound process — spends more time doing |/O than
computations, many short CPU bursts

* CPU-bound process — spends more time doing computations;
few very long CPU bursts
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o Context Switch
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®  When CPU switches to another process, the system must save the state of
the old process and load the saved state for the new process via a context
switch

m  Context of a process represented in the PCB

®m  Context-switch time is overhead; the system does no useful work while
switching

®  Time dependent on hardware support
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v* Process Creation

®m  Parent process create children processes, which, in turn create other
processes, forming a tree of processes

®m  Generally, process identified and managed via a process identifier (pid)
®m Resource sharing

* Parent and children share all resources

e Children share subset of parent’s resources

* Parent and child share no resources
= Execution

» Parent and children execute concurrently

* Parent waits until children terminate
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“/é""’ Process Creation (Cont)

®m  Address space
e Child duplicate of parent
e Child has a program loaded into it
® UNIX examples
» fork system call creates new process

* exec system call used after a fork to replace the process’ memory
space with a new program
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> ot Process Creation
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“W’ C Program Forking Separate Process

int main()
{
pid_t pid;
/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
exit(-1);
}
else if (pid == 0) { /* child process */
execlp("/bin/ls", "Is", NULL);
}
else { /* parent process */
/* parent will wait for the child to complete

*/
wait (NULL);
printf ("Child Complete");
exit(0);

}
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“377 A tree of processes on a typical Solaris
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§w‘ Process Termination

®  Process executes last statement and asks the operating system to
delete it (exit)

e Qutput data from child to parent (via wait)

* Process’ resources are deallocated by operating system
®  Parent may terminate execution of children processes (abort)

* Child has exceeded allocated resources

» Task assigned to child is no longer required

* |f parent is exiting

» Some operating system do not allow child to continue if its
parent terminates

All children terminated - cascading termination
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“%”  Interprocess Communication

®  Processes within a system may be independent or cooperating

m  Cooperating process can affect or be affected by other processes,
including sharing data

®m  Reasons for cooperating processes:

* [nformation sharing

e Computation speedup

* Modularity

e Convenience
®m  Cooperating processes need interprocess communication (IPC)
=  Two models of IPC

e Shared memory

* Message passing

> S \V\“xx
K =5 2\
g ’W

4 ;QJ B




Kl Communications Models

process A M process A |
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;w Synchronization

®  Message passing may be either blocking or non-blocking
= Blocking is considered synchronous

* Blocking send has the sender block until the message is
received

* Blocking receive has the receiver block until a message is
available

= Non-blocking is considered asynchronous

* Non-blocking send has the sender send the message and
continue

* Non-blocking receive has the receiver receive a valid message
or null
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55 Buffering

s

®  Queue of messages attached to the link; implemented in one of three
ways

1. Zero capacity — 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits




End of Chapter 3
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