Chapter 3: Processes
] ]

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009



/f‘%(
-

&«gw Administrivia

= Friday: lab day.
=  For Monday: Read Chapter 4.

= Written assignment due Wednesday, Feb. 25 --- see web site.




" r“f‘m'l
ot

©\\.

Outline

®  What is a process?

® How is a process represented?

®=  Process states.

®  Scheduling and context switches.
= Process creation/termination.

® |nterprocess communication, synchronization.




g5 Objectives

O \k:.

= To introduce the notion of a process -- a program in
execution, which forms the basis of all computation

® To describe the various features of processes, including
scheduling, creation and termination, and communication

Operating System Concepts — 8 Edition 3.4 Silberschatz, Galvin and Gagne ©2009




g / ﬂf,ﬁm»l
57

| QW

Process Concept

®  An operating system executes a variety of programs:
» Batch system — jobs
* Time-shared systems — user programs or tasks
®m  Textbook uses the terms job and process almost interchangeably

®m  Process — a program in execution; process execution must
progress in sequential fashion

®m A process includes:
®* program counter
e stack
e data section




) ’/%

o Process in Memory

max

stack

heap

data

text

Operating System Concepts — 8" Edition 3.6 Silberschatz, Galvin and Gagne ©2009



=

,ﬂ«ml

o Process State

“L‘ N

®m  As a process executes, it changes state
* new: The process is being created
* running: Instructions are being executed
e waiting: The process is waiting for some event to occur
e ready: The process is waiting to be assigned to a processor
e terminated: The process has finished execution

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 3.7



5> -
> Diagram of Process State

(4 S

/’%

admitted interrupt

scheduler dispatch

I/O or event completion I/O or event wait

S




P
“»”’ Process Control Block (PCB)

Information associated with each process
= Process state

®  Program counter

®  CPU registers

®m  CPU scheduling information

= Memory-management information

®  Accounting information

® |/O status information

\
\\\
il
2 M
T A
3N

Operating System Concepts — 8" Edition 3.9 Silberschatz, Galvin and Gagne ©20




=

(o]

“»”" Process Control Block (PCB)

Operating System Concepts — 8" Edition

process state

process number

program counter

registers

memory limits

list of open files

3.10

Silberschatz, Galvin and Gagne ©2009



/';%

“W” CPU Switch From Process to Process

process P, operating system process P,

interrupt or system call

executing J /
k 4 =~
save state into PCB,
: - idle
reload state from PCB, 1
>idle interrupt or system call executing
[ %
save state into PCB,
> idle
) reload state from PCB, J
executing ] _¥
Y




]

“g" N

Process Scheduling Queues

=  Job queue — set of all processes in the system (PCB table)

®  Ready queue — set of all processes residing in main memory,
ready and waiting to execute

®m  Device queues — set of processes waiting for an I/O device
®  Processes migrate among the various queues

Operating System Concepts — 8" Edition 3.12 Silberschatz, Galvin and Gagne ©2009




/’%

%7/ Ready Queue And Various I/O Device Queues

ready
queue

mag
tape
unit 0

mag
tape
unit 1

disk
unit 0

terminal
unit 0

PCB,

PCB,,

registers

PCB,

queue header PCB,
head »
tail registers
L]
head —T——=
tail  ——=
head +—=
head 1
tail

PCB.

head

tail

y
\\r

Operating System Concepts — 8" Edition

3.13




g ] ]
Q‘{?{'f Representation of Process Scheduling
| ready queue CPU :

I/O queue & |/Orequest &
time slice |
expired

interrupt wait for an
occurs interrupt

child fork a
@7 child )

Operating System Concepts — 8" Edition 3.14 Silberschatz, Galvin and Gagne ©2009



(GFr
g5 Schedulers

= Long-term scheduler (or job scheduler) — selects which
processes should be brought into the ready queue

= Short-term scheduler (or CPU scheduler) — selects which
process should be executed next and allocates CPU

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 3.15




=

“%7 Addition of Medium Term Scheduling

swap in partially executed

swapped-out processes

swap out

» ready queue

-@} » end

I/O waiting
gueues

Operating System Concepts — 8" Edition 3.16

S

Silberschatz, Galvin and Gagne ©2009



557 Schedulers (Cont)

®m  Short-term scheduler is invoked very frequently (milliseconds) [
(must be fast)

® | ong-term scheduler is invoked very infrequently (seconds,
minutes) O (may be slow)

®  The long-term scheduler controls the degree of multiprogramming
B Processes can be described as either:

* |/O-bound process — spends more time doing |/O than
computations, many short CPU bursts

* CPU-bound process — spends more time doing computations;
few very long CPU bursts

A i \
/“S}‘Q\\\
£ " <
A ?};v 2




g—
gr/ﬁ‘ ‘ I
o Context Switch

A\

®  When CPU switches to another process, the system must save the state of
the old process and load the saved state for the new process via a context
switch

m  Context of a process represented in the PCB

®m  Context-switch time is overhead; the system does no useful work while
switching

®  Time dependent on hardware support

AN\
S\

> ‘W\i\ )
AU 29% N




v* Process Creation

®m  Parent process create children processes, which, in turn create other
processes, forming a tree of processes

®m  Generally, process identified and managed via a process identifier (pid)
®m Resource sharing

* Parent and children share all resources

e Children share subset of parent’s resources

* Parent and child share no resources
= Execution

» Parent and children execute concurrently

* Parent waits until children terminate

/ \ D,
Y0 AN




=

“/é""’ Process Creation (Cont)

®m  Address space
e Child duplicate of parent
e Child has a program loaded into it
® UNIX examples
» fork system call creates new process

* exec system call used after a fork to replace the process’ memory
space with a new program

\
\\ 1Y
W'l
s I
T A
3N

Operating System Concepts — 8t Edition 3.20 Silberschatz, Galvin and Gagne ©20




> ot Process Creation

parent /xn;it\ resumes

[
-

child exec()

Operating System Concepts — 8" Edition 3.21 Silberschatz, Galvin and Gagne ©2009




%

“W’ C Program Forking Separate Process

int main()
{
pid_t pid;
/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
exit(-1);
}
else if (pid == 0) { /* child process */
execlp("/bin/ls", "Is", NULL);
}
else { /* parent process */
/* parent will wait for the child to complete

*/
wait (NULL);
printf ("Child Complete");
exit(0);

}

SO

\
o \?\ \\l
b
,ga 20

Operating System Concepts — 8t Edition 3.22 Silberschatz, Galvin and Gagne ©2009

(,




“377 A tree of processes on a typical Solaris

Sched
pid =0

dtlogin
pid = 251

.5
a
8
=4

inetd
pid = 140

Xsession
pid = 294

telnetdaemon
pid = 7776

Csh
pid = 7778

Netscape emacs
pid = 7785 pid = 8105

sdt_shel
P id = 340

Csh
pid = 1400

cat
pid = 2536

=

3

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 3.23



§w‘ Process Termination

®  Process executes last statement and asks the operating system to
delete it (exit)

e Qutput data from child to parent (via wait)

* Process’ resources are deallocated by operating system
®  Parent may terminate execution of children processes (abort)

* Child has exceeded allocated resources

» Task assigned to child is no longer required

* |f parent is exiting

» Some operating system do not allow child to continue if its
parent terminates

All children terminated - cascading termination

~ N A\ ’ \
N> v\ %\
£ /“%\5\\\\
(P4
I B




fﬂmbh.l

(r/‘ /J I I
“%”  Interprocess Communication

®  Processes within a system may be independent or cooperating

m  Cooperating process can affect or be affected by other processes,
including sharing data

®m  Reasons for cooperating processes:

* [nformation sharing

e Computation speedup

* Modularity

e Convenience
®m  Cooperating processes need interprocess communication (IPC)
=  Two models of IPC

e Shared memory

* Message passing

> S \V\“xx
K =5 2\
g ’W

4 ;QJ B




Kl Communications Models

process A M process A |
,

shared é
process B M process B d 1

2 1
kernel M kernel
(a) (b)

Operating System Concepts — 8" Edition 3.26 Silberschatz, Galvin and Gagne ©2009




;w Synchronization

®  Message passing may be either blocking or non-blocking
= Blocking is considered synchronous

* Blocking send has the sender block until the message is
received

* Blocking receive has the receiver block until a message is
available

= Non-blocking is considered asynchronous

* Non-blocking send has the sender send the message and
continue

* Non-blocking receive has the receiver receive a valid message
or null

N \ )
> v\ . &\
r/“igwdy
0 /}‘v\(
'ﬁ&" .Axf. 3

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 3.27



55 Buffering

s

®  Queue of messages attached to the link; implemented in one of three
ways

1. Zero capacity — 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits




End of Chapter 3

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009



