Chapter 1: Introduction

Administrivia

Reading: Chapter 1.

Next time: Continued "Grand Tour."

Outline

- Common computer system devices.
- Parallelism within an operating system.
- Interrupts.
- Storage operation, hierarchy, and caching.
- Types of multiprocessor systems.
- Multiprogramming.
- Kernel and user modes.

Computer System Organization

- Computer-system operation
 - One or more CPUs, device controllers connect through common bus providing access to shared memory
 - Concurrent execution of CPUs and devices competing for memory cycles

Computer-System Operation

- I/O devices and the CPU can execute concurrently
- Each device controller is in charge of a particular device type
- Each device controller has a local buffer
- CPU moves data from/to main memory to/from local buffers
- I/O is from the device to local buffer of controller
- Device controller informs CPU that it has finished its operation by causing an interrupt

Common Functions of Interrupts

- Interrupt transfers control to the interrupt service routine generally, through the interrupt vector, which contains the addresses of all the service routines
- Interrupt architecture must save the address of the interrupted instruction
- Incoming interrupts are disabled while another interrupt is being processed to prevent a lost interrupt
- A trap is a software-generated interrupt caused either by an error or a user request
- An operating system is interrupt driven

Interrupt Handling

- The operating system preserves the state of the CPU by storing registers and the program counter
- Determines which type of interrupt has occurred:
 - polling
 - vectored interrupt system
- Separate segments of code determine what action should be taken for each type of interrupt

Interrupt Timeline

I/O Structure

- After I/O starts, control returns to user program only upon I/O completion
 - Wait instruction idles the CPU until the next interrupt
 - Wait loop (contention for memory access)
 - At most one I/O request is outstanding at a time, no simultaneous I/O processing
- After I/O starts, control returns to user program without waiting for I/O completion
 - System call request to the operating system to allow user to wait for I/O completion
 - Device-status table contains entry for each I/O device indicating its type, address, and state
 - Operating system indexes into I/O device table to determine device status and to modify table entry to include interrupt

Direct Memory Access Structure

- Used for high-speed I/O devices able to transmit information at close to memory speeds
- Device controller transfers blocks of data from buffer storage directly to main memory without CPU intervention
- Only one interrupt is generated per block, rather than the one interrupt per byte

Storage Structure

- Main memory only large storage media that the CPU can access directly
- Secondary storage extension of main memory that provides large nonvolatile storage capacity
- Magnetic disks rigid metal or glass platters covered with magnetic recording material
 - Disk surface is logically divided into tracks, which are subdivided into sectors
 - The disk controller determines the logical interaction between the device and the computer

Storage Hierarchy

- Storage systems organized in hierarchy
 - Speed
 - Cost
 - Volatility
- Caching copying information into faster storage system; main memory can be viewed as a last cache for secondary storage

Storage-Device Hierarchy

Caching

- Important principle, performed at many levels in a computer (in hardware, operating system, software)
- Information in use copied from slower to faster storage temporarily
- Faster storage (cache) checked first to determine if information is there
 - If it is, information used directly from the cache (fast)
 - If not, data copied to cache and used there
- Cache smaller than storage being cached
 - Cache management important design problem
 - Cache size and replacement policy

Computer-System Architecture

- Most systems use a single general-purpose processor (PDAs through mainframes)
 - Most systems have special-purpose processors as well
- Multiprocessors systems growing in use and importance
 - Also known as parallel systems, tightly-coupled systems
 - Advantages include
 - 4 Increased throughput
 - 4 Economy of scale
 - 4 Increased reliability graceful degradation or fault tolerance
 - Two types
 - Asymmetric Multiprocessing
 - 2. Symmetric Multiprocessing

How a Modern Computer Works

Symmetric Multiprocessing Architecture

A Dual-Core Design

Clustered Systems

- Like multiprocessor systems, but multiple systems working together
 - Usually sharing storage via a storage-area network (SAN)
 - Provides a high-availability service which survives failures
 - Asymmetric clustering has one machine in hot-standby mode
 - Symmetric clustering has multiple nodes running applications, monitoring each other
 - Some clusters are for high-performance computing (HPC)
 - Applications must be written to use parallelization

Operating System Structure

- Multiprogramming needed for efficiency
 - Single user cannot keep CPU and I/O devices busy at all times
 - Multiprogramming organizes jobs (code and data) so CPU always has one to execute
 - A subset of total jobs in system is kept in memory
 - One job selected and run via job scheduling
 - When it has to wait (for I/O for example), OS switches to another job
- Timesharing (multitasking) is logical extension in which CPU switches jobs so frequently that users can interact with each job while it is running, creating interactive computing
 - Response time should be < 1 second</p>
 - Each user has at least one program executing in memory process
 - If several jobs ready to run at the same timeCPU scheduling
 - If processes don't fit in memory, swapping moves them in and out to run
 - Virtual memory allows execution of processes not completely in memory

Memory Layout for Multiprogrammed System

operating system job 1 job 2 job 3 job 4 512M

Operating-System Operations

- Interrupt driven by hardware
- Software error or request creates exception or trap
 - Division by zero, request for operating system service
- Other process problems include infinite loop, processes modifying each other or the operating system
- Dual-mode operation allows OS to protect itself and other system components
 - User mode and kernel mode
 - Mode bit provided by hardware
 - Provides ability to distinguish when system is running user code or kernel code
 - Some instructions designated as privileged, only executable in kernel mode
 - System call changes mode to kernel, return from call resets it to user

Transition from User to Kernel Mode

- Timer to prevent infinite loop / process hogging resources
 - Set interrupt after specific period
 - Operating system decrements counter
 - When counter zero generate an interrupt
 - Set up before scheduling process to regain control or terminate program that exceeds allotted time

