Inside RAM

Tom Kelliher, CS 240 May 7, 2008

1 Administrivia

Announcements

Final: Tuesday, May 13, 3:00–5:00 pm.

Assignment

None.

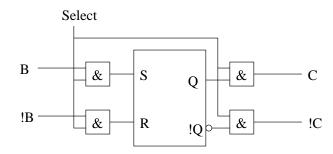
From Last Time

Introduction to memory; ROM; FLASH.

Outline

- 1. Introduction.
- 2. Static RAM.
- 3. Dynamic RAM.

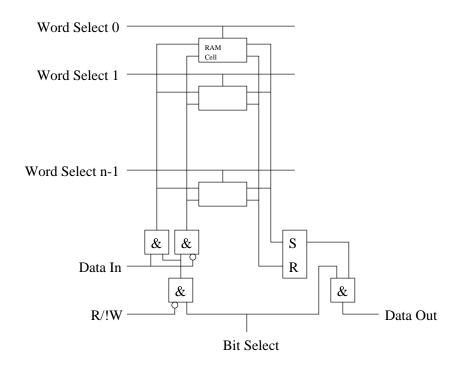
Coming Up


	•		1
н	11	าล	1
١,	11	17	а.

0	T , '	1 1 ·
٠,	Introc	luction
4		\mathbf{u}

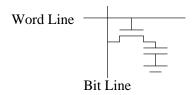
2		Introduction
	1.	Organizations of RAMs: number of words, bits/word.
	2.	Operation:
		(a) Not enabled: low power mode, output in high-impedance state (disconnected)
		(b) Read: A single word should be read. Address may change.
		(c) Write: A single word should be written. Address must be stable.
		(d) Refresh. Hidden or not hidden?
	3.	RAM will have a 2-D structure: row/word, column/bit.
		The number of columns may not have anything to do with bits/word — many RAMs have 1 bit/word but are 2-D internally.
	4.	RAMS consist of:
		(a) Storage cells.
		(b) Word and bit decoders.
		(c) Write logic.
		(d) Read logic (sense amp).
		(e) Refresh logic for DRAMs.

3 Static RAM


1. Memory cell model:

Goal: cell should be as small as possible, to increase storage density.

Think about the AND gates on the output side as tri-state buffers — transmission gates.


2. Bit slice of a RAM array:

3. Assume you have 4×1 bit-slice RAM cells. Adding 2-to-4 decoders, how would a 4×4 RAM look? A 16×1 RAM?

4 Dynamic RAM

1. DRAM cell:

- 2. SRAM cell: five or six transistors. DRAM cell: one transistor and one capacitor.
- 3. Bit-Slice: support structure similar.
- 4. Bit line has higher capacitance than storage capacitor sense amps.
- 5. Destructive read. Use of sense amps to restore data.
- 6. Refresh due to leakage. Refresh logic.