Carry Lookahead and Signed-Digit Addition

Tom Kelliher, CS 240 Feb. 22, 2008

1 Administrivia				
Announcements				
Assignment				
Read 4.6–4.7.				
From Last Time				
Addition limits.				
Outline				
1. Carry lookahead addition.				
2. Signed digit representations.				

Coming Up

Introduction to VHDL.

2 Carry Lookahead Addition

- 1. Now, we demonstrate a feasible $O(\log n)$ adder.
- 2. Recall:
 - (a) Carry generate: $g_i = a_i b_i$.
 - (b) Carry propagate: $p_i = a_i \oplus b_i$.

2.1 Carry Lookahead: The Big Picture

Restricting the carry computation circuitry to a tree structure:

- Leaves: Four-bit carry lookahead adders.
- Non-Leaves: Four-bit carry lookahead group units.

2.2 Four-Bit Carry Lookahead Adder

- 1. Design a four-bit full carry lookahead adder.
 - Block diagram:

Block generate, propagate.

- 2. What is the fan-in?
- 3. What is the delay model from inputs to outputs?

2.3 4-Bit Group Carry Lookahead Unit

 $1.\ \, {\rm Design}$ a 4-Group carry lookahead unit.

Block diagram:

Use of block generates, propagates.

2. What is the fan-in?

3. What is the delay model from inputs to outputs?

2.4 16-Bit Carry Lookahead Adders

Total gate delays for ripple-carry adder.

Gate delays for cascaded and full carry lookahead adders.

3 Signed Digit Representations

- 1. Consider the digit set of the maximally redundant signed digit representation for radix r: $\{\overline{r-1}, \overline{r-2}, \dots, \overline{1}, 0, 1, \dots, r-1\}$
- 2. For radix 2 we have: $\{\overline{1}, 0, 1\}$.

Radix 4:
$$\{\overline{3}, \overline{2}, \dots, 3\}$$
.

- 3. For some values, there are multiple representations. For example: $3 = 011 = 10\overline{1}$ (radix 2).
- 4. This redundancy can be exploited so that we can design constant time signed digit adders.

3.1 Constant Time Radix 2 Signed Digit Adder

- 1. Idea: Ensure that a carry propagates no further than two bit positions.
- 2. Circuit sketch:

3. Stage 1 adder addition table:

Addend + Augend	Carry	\mathbf{Sum}
$\overline{2}$	$\overline{1}$	0
$\overline{1}$	$\overline{1}$	1
0	0	0
1	0	1
2	1	0

Goal: Ensure sums are ≥ 0 to eliminate -2 as a possible starting sum in the next stage.

4. Stage 2 adder addition table:

Addend + Augend	Carry	\mathbf{Sum}
$\overline{1}$	0	1
0	0	0
1	1	$\overline{1}$
2	1	0

Goal: Ensure sums are ≤ 0 to eliminate 2 and -2 as possible starting sums in the next stage.

5. Final stage addition table:

Addend + Augend	Carry	\mathbf{Sum}
$\overline{1}$	0	$\overline{1}$
0	0	0
1	0	1