Implicant Simplification and Don't Cares

Tom Kelliher, CS 240 Feb. 6, 2008

1 Administrivia
Announcements
Assignment
Read 2.6–2.8.
From Last Time
Minterms and maps.
Outline
1. Implicants and friends.
2. Don't cares.
Coming Up

NAND gates, implementation, XOR, parity.

2 Implicants and Friends

Consider $F(A, B, C, D) = \sum m(0, 2, 3, 8, 9, 10, 12, 13)$. Diagram on K-map.

1. A few implicants: $\overline{A} \ \overline{B} \ \overline{C} \ \overline{D}$, $\overline{B} \ \overline{C} \ \overline{D}$, $\overline{B} \ \overline{D}$.

Not implicants: $\overline{B}C$, ABD.

2. Prime Implicants: \overline{B} \overline{D} , \overline{A} $\overline{B}C$, $A\overline{C}$.

(Neither of the first two implicants are prime.)

3. Essential prime implicants. All three of the prime implicants are essential.

Example with non-essential prime implicant: $F(A, B, C) = \sum m(0, 1, 5, 7)$. Prime implicants: $\overline{A} \overline{B}, \overline{B}C, AC$. Essential prime implicants: $\overline{A} \overline{B}, AC$.

2.1 Simplifying an Expression

- 1. Find prime implicants.
- 2. Include all essential prime implicants.
- 3. Include minimal number of remaining prime implicants to cover all minterms.

2.2 Example

Find all prime implicants, essential prime implicants, and simplify: $F(A, B, C, D) = \sum m(0, 2, 5, 7, 8, 10, 12, 13, 14, 15)$. (2-19(a))

3 Don't Cares

Simply: for invalid input values, we don't care what the output value is.

Also: we simply don't care what the output value is for a particular input value.

3.1 Examples

- 1. Find all prime implicants, essential prime implicants, and simplify: $F(A, B, C) = \sum m(3, 5, 6), \ d(A, B, C) = \sum m(0, 7).$ (2-25(a))
- 2. Real-world example. Consider a BCD to 7-segment display decoder. Develop a simplified Boolean expression for the middle segment.