
Sequential Circuit Design

Tom Kelliher, CS 240 Apr. 4, 2008

Outline

- 1. Sequential circuit design process.
- 2. Unused states.
- 3. Examples.

Coming Up

VHDL for sequential circuits.

2 Sequential Circuit Design Process

- 1. Obtain a state diagram. Assign binary numbers to the states (a non-trivial problem, actually).
- 2. Obtain a state table.
- 3. Derive flip-flop input equations from the next state entries and output equations. Simplify.
- 4. Draw your schematic.

3 Unused States

Suppose your design has 6 states:

- 1. Two unused states.
- 2. What happens if the circuit enters one of these states?

4 Examples

- 1. Sequence recognizer for 010.
- 2. Serial comparator. Inputs: A, B, msb. A and B are received least significant bit first. Receipt of msb is co-incident with msb's of A and B and resets circuit to begin next comparison. Output 0 if $A \ge B$, otherwise 1.
- 3. Serial comparator. Inputs: A, B, lsb. A and B are received most significant bit first. Receipt of lsb is co-incident with lsb's of A and B and resets circuit to begin next comparison. Output 0 if $A \ge B$, otherwise 1.

4.	Given an unsigned binary value n serially, How would you compute $2n$?	starting	from th	e lsb,	compute $3n$.	Hint: