
Modeling a Colored Cube

Tom Kelliher, CS 320

Mar. 21, 2005

1 Administrivia

Announcements

Assignment

What you should be reading: 4.1–4.9, Appendices B and C as necessary.

From Last Time

Outline

1. Rotating cube program.

2. Cube representation.

3. Depth buffering.

4. Non-Commutivity of rotations.

Coming Up

More on linear algebra basis of transformations.

1



2 Prelude

If you want to rotate an object about its center, in what order do you apply the three
transformations? Does the order matter?

3 A Rotating, Color-Interpolated Cube

• Assign a color to each vertex and see what happens.

• Note dimensions of cube and clipping volume.

• Note that the reshape function maintains the aspect ratio:

void myReshape(int w, int h)

{

glViewport(0, 0, w, h);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

if (w <= h)

glOrtho(-2.0, 2.0, -2.0 * (GLfloat) h / (GLfloat) w,

2.0 * (GLfloat) h / (GLfloat) w, -10.0, 10.0);

else

glOrtho(-2.0 * (GLfloat) w / (GLfloat) h,

2.0 * (GLfloat) w / (GLfloat) h, -2.0, 2.0, -10.0, 10.0);

glMatrixMode(GL_MODELVIEW);

}

(Note use of glOrtho.)

3.1 Representation

There’s a hard way and an easy way to do this. Which way is this?

GLfloat vertices[][3] = {{-1.0,-1.0,-1.0},{1.0,-1.0,-1.0},

{1.0,1.0,-1.0}, {-1.0,1.0,-1.0}, {-1.0,-1.0,1.0},

{1.0,-1.0,1.0}, {1.0,1.0,1.0}, {-1.0,1.0,1.0}};

2



GLfloat colors[][3] = {{0.0,0.0,0.0},{1.0,0.0,0.0},

{1.0,1.0,0.0}, {0.0,1.0,0.0}, {0.0,0.0,1.0},

{1.0,0.0,1.0}, {1.0,1.0,1.0}, {0.0,1.0,1.0}};

1. Coordinate system: +x to right, +y up, +z towards us. Right-hand system.

2. Vertex list and a numbering of the cube’s vertices:

7

0 1

23

4 5

6

3. Color interpolation: bilinear interpolation.

Let p be α the way from P0 to P1. p’s color is:

(1− α)P0 + αP1

(for each color)

What about points on interior of polygon?

4. Enumerating the vertices on each of the faces:

void colorcube(void)

{

/* map vertices to faces */

polygon(0,3,2,1);

polygon(2,3,7,6);

polygon(0,4,7,3);

polygon(1,2,6,5);

polygon(4,5,6,7);

polygon(0,1,5,4);

}

3



void polygon(int a, int b, int c , int d)

{

/* draw a polygon via list of vertices */

glBegin(GL_POLYGON);

glColor3fv(colors[a]);

glVertex3fv(vertices[a]);

glColor3fv(colors[b]);

glVertex3fv(vertices[b]);

glColor3fv(colors[c]);

glVertex3fv(vertices[c]);

glColor3fv(colors[d]);

glVertex3fv(vertices[d]);

glEnd();

}

Are we following the righthand rule for the outer side of each face? Does order of
rendering faces matter?

Why represent a cube this way?

Why the normals in the program code?

5. Display function:

void display(void)

{

/* display callback, clear frame buffer and z buffer,

rotate cube and draw, swap buffers */

glLoadIdentity();

glRotatef(theta[0], 1.0, 0.0, 0.0);

glRotatef(theta[1], 0.0, 1.0, 0.0);

glRotatef(theta[2], 0.0, 0.0, 1.0);

colorcube();

glutSwapBuffers();

}

4



3.2 Rotating One and Two Faces

Been here, done this. One face:

1. The face is rotating about the origin.

2. Perspective is not maintained.

Two faces:

1. An unexpected result? Why?

2. Fixing it: the depth buffer and hidden surface removal. Idea: associate a z-value with
each pixel in the frame buffer and only conditionally write new pixels.

3.3 Non-Commutivity of Rotations

Will these give the same result?

glLoadIdentity();

glRotatef(theta[0], 1.0, 0.0, 0.0); /* Rotate about x axis. */

glRotatef(theta[2], 0.0, 0.0, 1.0); /* Rotate about z axis. *.

glLoadIdentity();

glRotatef(theta[2], 0.0, 0.0, 1.0); /* Rotate about z axis. *.

glRotatef(theta[0], 1.0, 0.0, 0.0); /* Rotate about x axis. */

Can you describe the results?

5


