More Light on Light

Tom Kelliher, CS 320 Apr. 11, 2003

1 Administrivia

Announcements
Projects due Wednesday.
Assignment
Read Chapter 6.
From Last Time
Introduction to light.
Outline

Coming Up

1. Derivation of Phong lighting model.

2. Computing normal vectors.

Project day.

2 The Phong Reflection Model

- 1. Consider an object point, \mathbf{p} and a light source \mathbf{p}_i .
- 2. Important vectors:

- (a) *l*: vector to light source.
- (b) n: surface normal.
- (c) v: vector to COP.
- (d) r: reflection vector.
- 3. The light from source to object can be described by:

$$\mathbf{L}_i = \left[egin{array}{ccc} L_{ira} & L_{iga} & L_{iba} \ L_{ird} & L_{igd} & L_{ibd} \ L_{irs} & L_{igs} & L_{ibs} \end{array}
ight]$$

(theoretically wrong but, in practice, right)

4. Using material properties, distance from source, orientation of surface and direction of source a reflection matrix can be constructed:

$$\mathbf{R}_{i} = \left[\begin{array}{ccc} R_{ira} & R_{iga} & R_{iba} \\ R_{ird} & R_{igd} & R_{ibd} \\ R_{irs} & R_{igs} & R_{ibs} \end{array} \right]$$

5. (Simplified) Illumination at $\mathbf{p}:$

$$I = I_a + I_d + I_s = L_a R_a + L_d R_d + L_s R_s$$

2

A global ambient term may be "thrown" in.

2.1 Ambient Reflection

Same at each point on a surface:

$$I_a = R_a L_a$$

Repeat for each color.

2.2 Diffuse Reflection

- 1. Diffuse surface brightest at noon, dimmest at dawn, dusk.
- 2. Lambert's law: we see only the vertical component of light:

$$R_d \propto \cos \theta$$

3. If \mathbf{l} and \mathbf{n} are normalized:

$$\cos \theta = \mathbf{l} \cdot \mathbf{n}$$

So:

$$I_d = \frac{R_d}{a + bd + cd^2} (\mathbf{l} \cdot \mathbf{n}) L_d.$$

2.3 Specular Reflection

- 1. Specular reflection produces highlights.
- 2. The smoother the surface (higher shininess) the narrower the range of reflection angles.
- 3. Reflectivity proportional to angle between viewer (\mathbf{v}) and perfect reflection (\mathbf{r}) :

$$R_d \propto \cos^{\alpha} \phi$$
,

where α is the shininess term:

- (a) < 100 for objects with broad highlights.
- (b) 100 to 500 for most metallic objects.
- 4. Assuming normalized vectors:

$$I_s = \frac{R_s}{a + bd + cd^2} (\mathbf{r} \cdot \mathbf{v})^{\alpha} L_s$$

2.4 The Phong Model

Computed for each light source and each color:

$$I = \frac{1}{a + bd + cd^2} (R_d L_d (\mathbf{l} \cdot \mathbf{n}) + R_s L_s (\mathbf{r} \cdot \mathbf{v})^{\alpha}) + R_a L_a.$$

3 Introduction to Computation of Normals

- 1. Outward facing normal must be specified for each vertex.
- 2. Analytic surfaces: cross product of partial differentials
- 3. Polygonal surfaces:
 - (a) Points of continuity.
 - (b) Points of discontinuity.