
PHP: Sessions and PostgreSQL Connectivity

Tom Kelliher, CS 318

Feb. 18, 2002

1 Administrivia

Announcements

Assignment

Catch up on the reading!!!

From Last Time

SQL queries.

Outline

1. Introduction.

2. Sessions.

3. PostgreSQL connectivity.

4. Example code walk-through.

1

Coming Up

PHP/PostgreSQL lab.

2 Introduction

1. HTTP is a stateless protocol.

(a) What does this mean?

(b) What are the consequences?

2. Mechanisms for retaining state (persistence):

(a) Hidden fields in forms.

(b) Cookies.

(c) Sessions.

Advantages, disadvantages.

3. HTTP/PHP session information transfer model:

HTTP GET, POST
Session ID

Session Files

Client Server

Session ID

(a) HTTP GET: parameters passed as part of URL:

2

http://phoenix.goucher.edu/process.php?name=tom

i. Accessed through _GET associative array in PHP:

$name = $_GET["name"];

ii. Session ID passed as GET parameter:

echo "<A href=\"http://phoenix.goucher.edu/process.php?"

. SID . "\">";

(b) HTTP POST: parameters passed into script via stdin.

i. Accessed through _POST associative array.

(c) Session variables are maintained on the server and accessed by referring to a
session ID and using the _SESSION associative array.

3 Sessions

1. Sessions exist until browser is closed or PHP garbage collector removes the session data
file.

2. Establishing a session and writing session variables:

session_start();

$_SESSION["username"] = $username;

$_SESSION["password"] = $password;

(a) session_start() and new/resumed sessions.

3. The session ID constant: SID.

4. Checking to see if a session variable already exists:

if (isset($_SESSION["username"])

$username = $_SESSION["username"];

else

$_SESSION["username"] = $username;

3

5. Deleting a session variable (enhanced security):

unset($_SESSION["username"]);

Also possible to delete entire session — see online docs.

6. Avoiding garbage collection:

(a) Garbage collector invoked by any session_start().

(b) Session files older (mod time) than 24 minutes are reclaimed.

(c) Avoiding garbage collection? Read/write a session variable.

4 PostgreSQL Connectivity

1. Processing model:

(a) Establish connection, receive handle.

(b) Send SQL query, receive results “array.”

(c) Process results array.

(d) Free results array.

(e) Repeat as needed.

(f) Close connection.

2. Establishing a connection:

$handle = pg_connect("dbname=databaseName user=userName password=pwd");

Check handle status!! Why handles? (Script could have multiple DB connections
open.)

4

3. Sending a query:

$result = pg_exec($handle, "query string");

Check result status!!

4. Determining the size of a result: pg_numrows($result), pg_numfields($result).

5. Accessing the result:

$item = pg_result($result, $row, $field);

$item = pg_result($result, $row, "fieldName");

$row and $field are 0-based numeric indices. fieldName is an associative array-style
index.

6. Freeing a result, closing a connection:

pg_freeresult($result);

pg_close($handle);

5 Example Code Walk-through

Refer to Class Materials section of course web site.

Things to note for each file:

1. login.html:

(a) Form tag: method and action.

(b) Input tags: types and names.

2. authenticate.php:

(a) Debugging notes.

5

(b) Retrieval of username, password. Associative array.

(c) Database connection and error checking.

(d) Sending a query and error checking.

(e) Accessing query results. Associative array.

Why the check on pg_numrows()?

(f) Establishing the session and saving session variables.

(g) Passing SID back to the server as a GET parameter.

SID will be empty when we resume the session.

(h) Freeing the result and closing the database. Why?

3. query.php:

(a) Retrieving session variables.

(b) Iterating through the result.

6

