
Normal Forms and Decompositions

Tom Kelliher, CS 318

Apr. 1, 2002

1 Administrivia

Announcements

Assignment

Read 8.7–8.

Sample end-to-end application due Friday.

Each group must demonstrate its relations are in BCNF or 3NF (or show how to decompose
the relations into BCNF or 3NF — no need to implement) by the end of the semester.

From Last Time

Entailment checking.

Outline

1. Normal Forms.

2. Properties of Decompositions.

1



Coming Up

Synthesis/decomposition of BCNF and 3NF.

2 Normal Forms

Normal forms eliminate degrees of redundancy.

Example relation: (SSN, Name, Address, Hobby). FDs?

Example decomposed relation: (SSN, Name, Address), (SSN, Hobby).

2.1 Boyce-Codd Normal Form

A relational schema R = (R;F) is in BCNF if for every FD X → Y ∈ F either of the
following is true:

1. Y ⊆ X.

2. X is a superkey of R.

Are either of the examples in BCNF?

2.2 Third Normal Form

A relational schema R = (R;F) is in BCNF if for every FD X → A ∈ F either of the
following is true:

1. A ⊆ X.

2. X is a superkey of R.

3. A ∈ K for some key K of R.

2



Which is true: all BCNF schemas are in 3NF, vice-versa, or none of the above?

3 Properties of Decompositions

1. What is a decomposition?

2. Lossless decompositions.

3. Dependency preserving decompositions.

4. Conclusions.

3.1 Definition of a Decomposition

A decomposition of R = (R;F) is a set of schemas:

R1 = (R1;F1),R2 = (R2;F2), . . . ,Rn = (Rn;Fn),

such that the following hold:

1. R = ∪n
i=1Ri.

2. F entails Fi for all i.

The decomposition of a relation instance is defined similarly.

3.2 Lossless Decompositions

1. We need:
r = r1 ./ r2 ./ · · · ./ rn.

Why? Consider the “ultimate” redundancy eliminating “decomposition” of the exam-
ple relation.

2. This is always true:
r ⊆ r1 ./ r2 ./ · · · ./ rn.

Why?

3



3. So we need to show:
r1 ./ r2 ./ · · · ./ rn ⊆ r.

4. A binary decomposition will be lossless if either of the following is true:

(a) (R1 ∩R2) → R1 ∈ F+.

(b) (R1 ∩R2) → R2 ∈ F+.

The justification isn’t that hard, but we’ll skip it.

3.3 Dependency-Preserving Decompositions

1. Consider the schema HasAccount (AccountNumber, ClientId, OfficeId) with FDs:

(a) ClientId, OfficeId → AccountNumber

(b) AccountNumber → OfficeId

It has been decomposed into: (AccountNumber, OfficeId) and (AccountNumber, Cli-
entId). What about the FDs?

2. A decomposition is dependency-preserving iff

F = ∪n
i=1Fi

How do we show this?

3. Decompositions which are not dependency-preserving require extra work on updates!

4. Consider R = (R;F) and one of the schemas of the decomposition: Ri. We define:

πRi
(F) = {X → Y | X → Y ∈ F+ and X ∪ Y ⊆ Ri}.

The idea is to use this projection to define Fi.

5. Computing these projections is exponential in the size of F !

4



3.4 Conclusions

1. All things being equal, BCNF is preferable to 3NF.

2. Not all BCNF decompositions are dependency-preserving.

A problem in update-intensive environments.

3. When BCNF decomposition results in a dependency-preserving set of relations, use
the BCNF.

Otherwise, consider using 3NF.

5


