
Slide 1/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

This program is part of the software suite
that accompanies the book

The Elements of Computing Systems
by Noam Nisan and Shimon Schocken

MIT Press

www.nand2tetris.org

This software was developed by students at the
Efi Arazi School of Computer Science at IDC

Chief Software Architect: Yaron Ukrainitz

Hardware Simulator Tutorial

Slide 2/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Background

The Elements of Computing Systems evolves around
the construction of a complete computer system,
done in the framework of a 1- or 2-semester course.

In the first part of the book/course, we build the
hardware platform of a simple yet powerful
computer, called Hack. In the second part, we build
the computer’s software hierarchy, consisting of an
assembler, a virtual machine, a simple Java-like
language called Jack, a compiler for it, and a mini
operating system, written in Jack.

The book/course is completely self-contained,
requiring only programming as a pre-requisite.

The book’s web site includes some 200 test
programs, test scripts, and all the software
tools necessary for doing all the projects.

Slide 3/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

The book’s software suite

This tutorial is
about the
hardware
simulator. Translators (Assembler, JackCompiler):

� Used to translate from high-level to low-level;

� Developed by the students, using the book’s
specs; Executable solutions supplied by us.

Other

� Bin: simulators and translators software;

� builtIn: executable versions of all the logic
gates and chips mentioned in the book;

� OS: executable version of the Jack OS;

� TextComparer: a text comparison utility.

(All the supplied tools are dual-platform: Xxx.bat starts
Xxx in Windows, and Xxx.sh starts it in Unix)

Simulators
(HardwareSimulator, CPUEmulator, VMEmulator):

� Used to build hardware platforms and
execute programs;

� Supplied by us.

Slide 4/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

The Hack computer

The hardware simulator described in this
tutorial can be used to build and test many
different hardware platforms. In this book, we
focus on one particular computer, called Hack.

Hack -- a 16-bit computer equipped with a
screen and a keyboard -- resembles hand-held
computers like game machines, PDA’s, and
cellular telephones.

The first 5 chapters of the book specify the
elementary gates, combinational chips,
sequential chips, and hardware architecture of
the Hack computer.

All these modules can be built and tested using
the hardware simulator described in this
tutorial.

That is how hardware engineers build chips
for real: first, the hardware is designed,
tested, and optimized on a software
simulator. Only then, the resulting
gate logic is committed to silicon.

Slide 5/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Hardware Simulation Tutorial

I. Getting started

II. Test scripts

III. Built-in chips

IV. Clocked chips

V. GUI-empowered chips

VI. Debugging tools

VII. The Hack Platform

Relevant reading (from “The Elements of Computing Systems”):

� Chapter 1: Boolean Logic

� Appendix A: Hardware Description Language

� Appendix B: Test Scripting Language

Slide 6/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Hardware Simulation Tutorial

Part I:

Getting Started

Slide 7/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

/** Exclusive-or gate. out = a xor b */
CHIP Xor {

IN a, b;

OUT out;

// Implementation missing.

}

/** Exclusive-or gate. out = a xor b */
CHIP Xor {

IN a, b;

OUT out;

// Implementation missing.

}

Chip Definition (.hdl file)

� Chip interface:

� Name of the chip

� Names of its input and output pins
� Documentation of the intended chip operation

� Typically supplied by the chip architect; similar to an API, or a contract.

chip
interface

Slide 8/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

/** Exclusive-or gate. out = a xor b */
CHIP Xor {

IN a, b;

OUT out;

PARTS:

Not(in=a, out=nota);

Not(in=b, out=notb);

And(a=a, b=notb, out=w1);

And(a=nota, b=b, out=w2);

Or(a=w1, b=w2, out=out);

}

/** Exclusive-or gate. out = a xor b */
CHIP Xor {

IN a, b;

OUT out;

PARTS:

Not(in=a, out=nota);

Not(in=b, out=notb);

And(a=a, b=notb, out=w1);

And(a=nota, b=b, out=w2);

Or(a=w1, b=w2, out=out);

}

� Any given chip can be implemented in several different ways. This particular
implementation is based on: Xor(a,b) = Or(And(a,Not(b)), And(b,Not(a)))

� Not, And, Or: Internal parts (previously built chips), invoked by the HDL
programmer

� nota, notb, w1, w2: internal pins, created and named by the HDL programmer;
used to connect internal parts.

chip
implementation

chip
interface

Chip Definition (.hdl file)

Slide 9/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Loading a Chip

Navigate to a
directory and select
an .hdl file.

Slide 10/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Loading a Chip

� Names and current values
of the chip’s input pins;

� To change their values,
enter the new values here.

� Read-only view of the loaded .hdl file;

� Defines the chip logic;

� To edit it, use an external text editor.

� Names and current
values of the chip’s
output pins;

� Calculated by the
simulator; read-only.

� Names and current values of
the chip’s internal pins
(used to connect the chip’s
parts, forming the chip’s logic);

� Calculated by the simulator;
read-only.

Slide 11/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Exploring the Chip Logic

1. Click the
PARTS
keyword

2. A table pops up, showing the chip’s internal
parts (lower-level chips) and whether they are:
� Primitive (“given”) or composite (user-defined)

� Clocked (sequential) or unclocked (combinational)

Slide 12/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

1. Click any one of
the chip PARTS

2. A table pops up, showing the
input/output pins of the selected
part (actually, its API), and their
current values;

A convenient debugging tool.

Exploring the Chip Logic

Slide 13/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Interactive Chip Testing

1. User: changes the values of some
input pins

2. Simulator: responds by:

� Darkening the output and internal
pins, to indicate that the displayed
values are no longer valid

� Enabling the eval
(calculator-shaped) button.

Slide 14/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Interactive Chip Testing

1. User: changes the values of some
input pins

2. Simulator: responds by:

� Darkening the output and internal
pins, to indicate that the displayed
values are no longer valid

� Enabling the eval
(calculator-shaped) button.Re-

calc

3. User: Clicked the eval button

4. Simulator: re-calculates the values
of the chip’s internal and output
pins (i.e. applies the chip logic to
the new input values)

5. To continue interactive testing,
enter new values into the input
pins and click the eval button.

Slide 15/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Hardware Simulation Tutorial

Part II:

Test Scripts

Slide 16/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Test Scripts

load Xor.hdl,
output-file Xor.out,
compare-to Xor.cmp,
output-list a%B3.1.3

b%B3.1.3
out%B3.1.3;

set a 0,
set b 0,
eval,
output;

set a 0,
set b 1,
eval,
output;
Etc.

load Xor.hdl,
output-file Xor.out,
compare-to Xor.cmp,
output-list a%B3.1.3

b%B3.1.3
out%B3.1.3;

set a 0,
set b 0,
eval,
output;

set a 0,
set b 1,
eval,
output;
Etc.

� If the script specifies a compare file, the
simulator will compare the .out file to
the .cmp file, line by line.

a	b	out
0	0	0
0	1	1
1	0	1
1	1	0

a	b	out
0	0	0
0	1	1
1	0	1
1	1	0

Generated
output file
(Xor.out)

Init

Simulation step

Simulation step

Test scripts:

� Are used for specifying, automating and
replicating chip testing

� Are supplied for every chip mentioned in
the book (so you don’t have to write them)

� Can effect, batch-style, any operation that
can be done interactively

� Are written in a simple language described
in Appendix B of the book

� Can create an output file that records the
results of the chip test

Slide 17/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Loading a Script

To load a new script (.tst
file), click this button;

Interactive loading of the chip
itself (.hdl file) may not be
necessary, since the test
script typically contains a
“load chip” command.

Slide 18/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Script Controls

Executes the next
simulation step

Multi-step execution,
until a pause

Pauses the
script execution

Resets
the script

Controls
the script
execution
speed Script =

series of
simulation
steps, each
ending with
a semicolon.

Slide 19/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Running a Script

Typical “init” code:

1. Loads a chip definition (.hdl) file

2. Initializes an output (.out) file

3. Specifies a compare (.cmp) file

4. Declares an output line format.

Script
exec-
ution
flow

Slide 20/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Script
exec-
ution
ends

Running a Script

Comparison of the output lines to
the lines of the .cmp file are
reported.

Slide 21/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Viewing Output and Compare Files

Slide 22/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Conclusion: the chip logic
(Xor.hdl) is apparently
correct (but not necessarily
efficient).

Observation:
This output file
looks like a Xor
truth table

Viewing Output and Compare Files

Slide 23/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Hardware Simulation Tutorial

Part III:

Built-in Chips

Slide 24/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Built-In Chips

General

� A built-in chip has an HDL interface and a Java
implementation (e.g. here: Mux16.class)

� The name of the Java class is specified following
the BUILTIN keyword

� Built-In implementations of all the chips that
appear in he book are supplied in the
tools/buitIn directory.

// Mux16 gate (example)

CHIP Mux16 {

IN a[16],b[16],sel;

OUT out[16];

BUILTIN Mux16;

}

// Mux16 gate (example)

CHIP Mux16 {

IN a[16],b[16],sel;

OUT out[16];

BUILTIN Mux16;

}

Built-in chips are used to:

� Implement primitive gates (in the computer built in this book: Nand and DFF)

� Implement chips that have peripheral side effects (like I/O devices)

� Implement chips that feature a GUI (for debugging)

� Provide the functionality of chips that the user did not implement for some reason

� Improve simulation speed and save memory (when used as parts in complex chips)

� Facilitate behavioral simulation of a chip before actually building it in HDL

� Built-in chips can be used either explicitly, or implicitly.

Slide 25/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Explicit Use of Built-in Chips

The chip is loaded from the
tools/buitIn directory (includes
executable versions of all the chips
mentioned in the book).

Built-in implementation.

Standard interface.

Slide 26/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Implicit Use of Built-in Chips

� When any HDL file is loaded, the simulator parses its definition. For each internal
chip Xxx(...) mentioned in the PARTS section, the simulator looks for an Xxx.hdl
file in the same directory (e.g. Not.hdl, And.hdl, and Or.hdl in this example).

� If Xxx.hdl is found in the current directory (e.g. if it was also written by the user), the
simulator uses its HDL logic in the evaluation of the overall chip.

� If Xxx.hdl is not found in the current directory, the simulator attempts to invoke the
file tools/builtIn/Xxx.hdl instead.

� And since tools/builtIn includes executable versions of all the chips mentioned in
the book, it is possible to build and test any of these chips before first building their
lower-level parts.

/** Exclusive-or gate. out = a xor b */
CHIP Xor {

IN a, b;
OUT out;
PARTS:

Not(in=a,out=Nota);
Not(in=b,out=Notb);
And(a=a,b=Notb,out=aNotb);
And(a=Nota,b=b,out=bNota);
Or(a=aNotb,b=bNota,out=out);

}

/** Exclusive-or gate. out = a xor b */
CHIP Xor {

IN a, b;
OUT out;
PARTS:

Not(in=a,out=Nota);
Not(in=b,out=Notb);
And(a=a,b=Notb,out=aNotb);
And(a=Nota,b=b,out=bNota);
Or(a=aNotb,b=bNota,out=out);

}

Slide 27/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Hardware Simulation Tutorial

Part IV:

Clocked Chips

(Sequential Logic)

Slide 28/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Clocked (Sequential) Chips

� The implementation of clocked chips is based on sequential logic

� The operation of clocked chips is regulated by a master clock signal:

� In our jargon, a clock cycle = tick-phase (low), followed by a tock-phase (high)

� During a tick-tock, the internal states of all the clocked chips are allowed to change,
but their outputs are “latched”

� At the beginning of the next tick, the outputs of all the clocked chips in the
architecture commit to the new values

� In a real computer, the clock is implemented by an oscillator; in simulators, clock
cycles can be simulated either manually by the user, or repeatedly by a test script.

Slide 29/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

The D-Flip-Flop (DFF) Gate

Clocked chips

� Clocked chips include registers,
RAM devices, counters, and
the CPU

� The simulator knows that the
loaded chip is clocked when
one or more of its pins is
declared “clocked”, or one or
more of its parts (or sub-parts,
recursively) is a clocked chip

� In the hardware platform built in
the book, all the clocked chips
are based, directly or indirectly,
on (many instances of) built-in
DFF gates.

/** Data Flip-flop:
* out(t)=in(t-1)
* where t is the time unit.
*/

CHIP DFF {
IN in;
OUT out;

BUILTIN DFF;
CLOCKED in, out;

}

/** Data Flip-flop:
* out(t)=in(t-1)
* where t is the time unit.
*/

CHIP DFF {
IN in;
OUT out;

BUILTIN DFF;
CLOCKED in, out;

}

DFF:

� A primitive memory gate that can
“remember” a state over clock cycles

� Can serve as the basic building block of
all the clocked chips in a computer.

Slide 30/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Since this built-in chip also
happens to be GUI- empowered,
the simulator displays its GUI

(More about GUI-empowered
chips, soon)

Simulating Clocked Chips

A built-in,
clocked
chip
(RAM8) is
loaded

Clocked (sequential) chips are clock-regulated.

Therefore, the standard way to test a clocked chip
is to set its input pins to some values (as with
combinational chips), simulate the progression of
the clock, and watch how the chip logic responds
to the ticks and the tocks.

For example, consider the simulation of an 8-word
random-access memory chip (RAM8).

Slide 31/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

1. User: enters
some input
values and
clicks the clock
icon once (tick)

A built-in,
clocked
chip
(RAM8) is
loaded

Simulating Clocked Chips

Slide 32/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

1. User: enters
some input
values and
clicks the clock
icon once (tick)

A built-in,
clocked
chip
(RAM8) is
loaded

Simulating Clocked Chips

2. Simulator:
changes the
internal state of
the chip, but note
that the chip’s
output pin is not
yet effected.

Slide 33/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

2. Simulator:
changes the
internal state of
the chip, but note
that the chip’s
output pin is not
yet effected.

1. User: enters
some input
values and
clicks the clock
icon once (tick)

3. User: clicks
the clock icon
again (tock)

A built-in,
clocked
chip
(RAM8) is
loaded

Simulating Clocked Chips

Slide 34/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

4. Simulator:
commits the
chip’s output pin
to the value of
the chip’s
internal state.

3. User: clicks
the clock icon
again (tock)

A built-in,
clocked
chip
(RAM8) is
loaded

1. User: enters
some input
values and
clicks the clock
icon once (tick)

Simulating Clocked Chips

2. Simulator:
changes the
internal state of
the chip, but note
that the chip’s
output pin is not
yet effected.

Slide 35/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Single-action
tick-tock

Tick-tocks
repeatedly and
infinitely

Controls the script
speed, and thus the
simulated clock speed,
and thus the overall
chip execution speed Default script: always loaded when

the simulator starts running;

The logic of the default script simply
runs the clock repeatedly;

Hence, executing the default script
has the effect of causing the clock
to go through an infinite train of tics
and tocks.

This, in turn, causes all the clocked
chip parts of the loaded chip to react
to clock cycles, repeatedly.

Simulating Clocked Chips Using a Test Script

Slide 36/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Hardware Simulation Tutorial

Part V:

GUI-Empowered

chips

Slide 37/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

1. A chip whose
parts include
built-in chips
was loaded into
the simulator

(ignore the chip
logic for now)

Note: the signature of the internal part does
not reveal if the part is implemented by a
built-in chip or by another chip built by the
user. Thus in this example you have to
believe us that all the parts of this loaded chip
are built-in chips.

Built-in Chips with GUI Effects

Slide 38/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

2. If the loaded chip or
some of its parts have
GUI side-effects, the
simulator displays the
GUI’s here.

Built-in Chips with GUI Effects

1. A chip whose
parts include
built-in chips
was loaded into
the simulator

(ignore the chip
logic for now)

GUI of the built-in
Screen.hdl chip

GUI of the built-in
RAM16K.hdl chip

GUI of the built-in
Keyboard.hdl chip

For each GUI-empowered built-in chip that appears
in the definition of the loaded chip, the simulator
does its best to put the chip GUI in this area.

The actual GUI’s behaviors are then effected by the
Java classes that implement the built-in chips.

Slide 39/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

The Logic of the GUIDemo Chip

// Demo of built-in chips with GUI effects

CHIP GUIDemo {

IN in[16],load,address[15];

OUT out[16];

PARTS:

RAM16K(in=in,load=load,address=address[0..13],out=null);

Screen(in=in,load=load,address=address[0..12],out=null);

Keyboard(out=null);

}

// Demo of built-in chips with GUI effects

CHIP GUIDemo {

IN in[16],load,address[15];

OUT out[16];

PARTS:

RAM16K(in=in,load=load,address=address[0..13],out=null);

Screen(in=in,load=load,address=address[0..12],out=null);

Keyboard(out=null);

}

� Effect: When the simulator evaluates this chip, it displays the GUI side-
effects of its built-in chip parts

� Chip logic: The only purpose of this demo chip is to force the simulator to
show the GUI of some built-in chips. Other than that, the chip logic is
meaningless: it simultaneously feeds the 16-bit data input (in) into the
RAM16K and the Screen chips, and it does nothing with the keyboard.

RAM16K,
Screen, &
Keyboard
are built-in
chips with GUI
side-effects

Slide 40/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

1. User enters:

� in = –1
(=16 1’s in binary)

� address = 5012

� load = 1

GUIDemo Chip in Action

2. User:
runs the
clock

3. 16 black
pixels are
drawn
beginning in
row = 156
col = 320

3. The chip logic
routes the in value
simultaneously into
the Screen chip and
the RAM16K chip

Explanation: According to the specification of
the computer architecture described in the
book, the pixels of the physical screen are
continuously refreshed from an 8K RAM-
resident memory map implemented by the
Screen.hdl chip. The exact mapping
between this memory chip and the actual
pixels is specified in Chapter 5. The refresh
process is carried out by the simulator.

Slide 41/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Hardware Simulation Tutorial

Part VI:

Debugging tools

Slide 42/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

System Variables

The simulator recognizes and maintains the following variables:

� Time: the number of time-units (clock-cycles) that elapsed since the script
started running is stored in the variable time

� Pins: the values of all the input, output, and internal pins of the simulated chip
are accessible as variables, using the names of the pins in the HDL code

� GUI elements: the values stored in the states of GUI-empowered built-in chips
can be accessed via variables. For example, the value of register 3 of the
RAM8 chip can be accessed via RAM8[3].

All these variables can be used in scripts and breakpoints, for debugging.

Slide 43/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Breakpoints

The breakpoints logic:

� Breakpoint = (variable, value)

� When the specified variable in some
breakpoint reaches its specified value,
the script pauses and a message is
displayed

� A powerful debugging tool.

1. Open the
breakpoints
panel

2. Previously-
declared
breakpoints

3. Add, delete,
or update
breakpoints

3. To update an existing
breakpoint, double-click it

Slide 44/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Scripts for Testing the Topmost Computer chip

load Computer.hdl
ROM32K load Max.hack,
output-file ComputerMax.out,
compare-to ComputerMax.cmp,
output-list time%S1.4.1

reset%B2.1.2
ARegister[]%D1.7.1
DRegister[]%D1.7.1
PC[]%D0.4.0
RAM16K[0]%D1.7.1
RAM16K[1]%D1.7.1
RAM16K[2]%D1.7.1;

breakpoint PC 10;
// First run: compute max(3,5)
set RAM16K[0] 3,
set RAM16K[1] 5,
output;
repeat 14 {

tick, tock, output;
}
// Reset the PC (preparing for
// second run)
set reset 1,
tick, tock, output;
// Etc.
clear-breakpoints;

load Computer.hdl
ROM32K load Max.hack,
output-file ComputerMax.out,
compare-to ComputerMax.cmp,
output-list time%S1.4.1

reset%B2.1.2
ARegister[]%D1.7.1
DRegister[]%D1.7.1
PC[]%D0.4.0
RAM16K[0]%D1.7.1
RAM16K[1]%D1.7.1
RAM16K[2]%D1.7.1;

breakpoint PC 10;
// First run: compute max(3,5)
set RAM16K[0] 3,
set RAM16K[1] 5,
output;
repeat 14 {

tick, tock, output;
}
// Reset the PC (preparing for
// second run)
set reset 1,
tick, tock, output;
// Etc.
clear-breakpoints;

� Scripts that test the CPU chip or the
Computer chip described in the book usually
start by loading a machine-language program
(.asm or .hack file) into the ROM32K chip

� The rest of the script typically uses various
features like:

• Output files

• Loops

• Breakpoints

• Variables manipulation

• tick, tock

• Etc.

• All these features are described in Appendix
B of the book (Test Scripting Language).

Slide 45/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Visual Options

� Script: displays the
current test script

� Output: displays the
generated output file

� Compare: displays
the supplied
comparison file

� Screen: displays the
GUI effects of built-in
chips, if any.

� Program flow: animates the
flow of the currently loaded
program

� Program & data flow: animates
the flow of the current program
and the data flow throughout the
GUI elements displayed on the
screen

� No animation (default):
program and data flow are not
animated.

� Tip: When running programs on
the CPU or Computer chip, any
animation effects slow down the
simulation considerably.

Format of displayed
pin values:

� Decimal (default)

� Hexadecimal

� Binary

Slide 46/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Hardware Simulation Tutorial

Part VII:

The Hack

Hardware Platform

Slide 47/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Hack: a General-Purpose 16-bit Computer

Hang
Man

Maze

Pong Grades
Stats

Sample applications running on the Hack computer:

These programs (and many more) were written in the Jack programming language,
running in the Jack OS environment over the Hack hardware platform. The hardware
platform is built in chapters 1-5, and the software hierarchy in chapters 6-12.

Slide 48/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

The Hack Chip-Set and Hardware Platform
Elementary logic gates

(Project 1):

� Nand (primitive)

� Not

� And

� Or

� Xor

� Mux

� Dmux

� Not16

� And16

� Or16

� Mux16

� Or8Way

� Mux4Way16

� Mux8Way16

� DMux4Way

� DMux8Way

Combinational chips

(Project 2):

� HalfAdder

� FullAdder

� Add16

� Inc16

� ALU

Sequential chips

(Project 3):

� DFF (primitive)

� Bit

� Register

� RAM8

� RAM64

� RAM512

� RAM4K

� RAM16K

� PC

Computer Architecture

(Project 5):

� Memory

� CPU

� Computer

Most of these chips are generic, meaning that they can be

used in the construction of many different computers.

The Hack chip-set and hardware platform can be built using

the hardware simulator, starting with primitive Nand.hdl and

DFF.hdl gates and culminating in the Computer.hdl chip.

This construction is described in chapters 1,2,3,5 of the book,

and carried out in the respective projects.

Slide 49/49HW Simulator Tutorial Tutorial Indexwww.nand2tetris.org

Aside: H.D. Thoreau about chips, bugs, and close observation:

I was surprised to find that the chips were covered
with such combatants, that it was not a duellum, but a
bellum, a war between two races of ants, the red always
pitted against the black, and frequently two red ones to
one black. The legions of these Myrmidons covered all
the hills and vales in my wood-yard, and the ground was
already strewn with the dead and dying, both red and
black.

It was the only battle which I have ever witnessed, the only battlefield I
ever trod while the battle was raging; internecine war; the red
republicans on the one hand, and the black imperialists on the other. On
every side they were engaged in deadly combat, yet without any noise
that I could hear, and human soldiers never fought so resolutely.... The
more you think of it, the less the difference. And certainly there is not
the fight recorded in Concord history, at least, if in the history of
America, that will bear a moment’s comparison with this, whether for the
numbers engaged in it, or for the patriotism and heroism displayed.

From “Brute Neighbors,” Walden (1854).

