
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 1

www.nand2tetris.org

Building a Modern Computer From First Principles

Virtual Machine
Part II: Program Control

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 2

Where we are at:

Assembler

Chapter 6

H.L. Language

&

Operating Sys.

abstract interface

Compiler

Chapters 10 - 11

VM Translator

Chapters 7 - 8

Computer
Architecture

Chapters 4 - 5

Gate Logic

Chapters 1 - 3 Electrical
Engineering

Physics

Virtual

Machine

abstract interface

Software

hierarchy

Assembly

Language

abstract interface

Hardware

hierarchy

Machine

Language

abstract interface

Hardware

Platform

abstract interface

Chips &

Logic Gates

abstract interface

Human
Thought

Abstract design

Chapters 9, 12

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 3

The VM language

Goal: Complete the specification and implementation of the VM model and language

Method: (a) specify the abstraction (model’s constructs and commands)
(b) propose how to implement it over the Hack platform.

Arithmetic / Boolean commands

add

sub

neg

eq

gt

lt

and

or

not

Memory access commands

pop x (pop into x, which is a variable)

push y (y being a variable or a constant)

Program flow commands

label (declaration)

goto (label)

if-goto (label)

Function calling commands

function (declaration)

call (a function)

return (from a function)

previous
lecture

this
lecture

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 4

Program flow commands in the VM language

How to translate these three abstractions into assembly?

� Simple: label declarations and goto directives can be
effected directly by assembly commands

� More to the point: given any one of these three VM

commands, the VM Translator must emit one or more
assembly commands that effects the same semantics
on the Hack platform

� How to do it? see project 8.

label c // label declaration

goto c // unconditional jump to the
// VM command following the label c

if-goto c // pops the topmost stack element;
// if it’s not zero, jumps to the
// VM command following the label c

In the VM language, the program flow abstraction is

delivered using three commands:
VM code example:

function mult 1

push constant 0

pop local 0

label loop

push argument 0

push constant 0

eq

if-goto end

push argument 0

push 1

sub

pop argument 0

push argument 1

push local 0

add

pop local 0

goto loop

label end

push local 0

return

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 5

Subroutines

Subroutines = a major programming artifact

� Basic idea: the given language can be extended at will by user-defined
commands (aka subroutines / functions / methods ...)

� Important: the language’s primitive commands and the user-defined commands
have the same look-and-feel

� This transparent extensibility is the most important abstraction delivered by
high-level programming languages

� The challenge: implement this abstraction, i.e. allow the program control to flow
effortlessly between one subroutine to the other

“A well-designed system consists of a collection of black box modules,
each executing its effect like magic”
(Steven Pinker, How The Mind Works)

// Compute x = (-b + sqrt(b^2 -4*a*c)) / 2*a

if (~(a = 0))

x = (-b + sqrt(b * b – 4 * a * c)) / (2 * a)

else

x = - c / b

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 6

Subroutines in the VM language

The invocation of the VM’s primitive
commands and subroutines
follow exactly the same rules:

�The caller pushes the necessary
argument(s) and calls the command /
function for its effect

�The called command / function is
responsible for removing the argument(s)
from the stack, and for popping onto
the stack the result of its execution.

function mult 1

push constant 0

pop local 0 // result (local 0) = 0

label loop

push argument 0

push constant 0

eq

if-goto end // if arg0 == 0, jump to end

push argument 0

push 1

sub

pop argument 0 // arg0--

push argument 1

push local 0

add

pop local 0 // result += arg1

goto loop

label end

push local 0 // push result

return

Called code, aka “callee” (example)

...

// computes (7 + 2) * 3 - 5

push constant 7

push constant 2

add

push constant 3

call mult

push constant 5

sub

...

Calling code (example)

VM subroutine
call-and-return
commands

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 7

Function commands in the VM language

Q: Why this particular syntax?

A: Because it simplifies the VM implementation (later).

function g nVars // here starts a function called g,
// which has nVars local variables

call g nArgs // invoke function g for its effect;
// nArgs arguments have already been pushed onto the stack

return // terminate execution and return control to the caller

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 8

Function call-and-return conventions

function mult 1

push constant 0

pop local 0 // result (local 0) = 0

label loop

... // rest of code omitted

label end

push local 0 // push result

return

called function aka “callee” (example)

function demo 3

...

push constant 7

push constant 2

add

push constant 3

call mult

...

Calling function

Call-and-return programming convention

� The caller must push the necessary argument(s), call the callee, and wait for it to return

� Before the callee terminates (returns), it must push a return value

� At the point of return, the callee’s resources are recycled, the caller’s state is re-instated,
execution continues from the command just after the call

� Caller’s net effect: the arguments were replaced by the return value
(just like with primitive commands)

Behind the scene

� Recycling and re-instating subroutine resources and states is a major headache

� Some agent (either the VM or the compiler) should manage it behind the scene “like magic”

� In our implementation, the magic is VM / stack-based, and is considered a great CS gem.

Although not obvious in this
example, every VM function
has a private set of 5 memory
segments (local, argument,

this, that, pointer)

These resources exist as long
as the function is running.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 9

The function-call-and-return protocol

The caller’s view:

� When I start executing, my argument segment has been initialized with actual
argument values passed by the caller

� My local variables segment has been allocated and initialized to zero

� The static segment that I see has been set to the static segment of the VM file to
which I belong, and the working stack that I see is empty

� Before exiting, I must push a value onto the stack and then use the command return.

� Before calling a function g, I must push onto the stack as many
arguments as needed by g

� Next, I invoke the function using the command call g nArgs

� After g returns:

� The arguments that I pushed before the call have disappeared
from the stack, and a return value (that always exists)
appears at the top of the stack

� All my memory segments (local, argument, this, that,

pointer) are the same as before the call.

The callee’s (g ‘s) view:

Blue = VM function
writer’s responsibility

Black = black box magic,
delivered by the
VM implementation

Thus, the VM implementation
writer must worry about
the “black operations” only.

function g nVars

call g nArgs

return

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 10

When function f calls function g, the VM implementation must:

� Save the return address within f ‘s code:
the address of the command just after the call

� Save the virtual segments of f

� Allocate, and initialize to 0, as many local variables as needed by g

� Set the local and argument segment pointers of g

� Transfer control to g.

When g terminates and control should return to f, the VM implementation must:

� Clear g ’s arguments and other junk from the stack

� Restore the virtual segments of f

� Transfer control back to f
(jump to the saved return address).

Q: How should we make all this work “like magic”?

A: We’ll use the stack cleverly.

The function-call-and-return protocol: the VM implementation view

function g nVars

call g nArgs

return

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 11

The implementation of the VM’s stack on the host Hack RAM

Global stack:
the entire RAM area dedicated
for holding the stack

Working stack:
The stack that the current
function sees

� At any point of time, only one
function (the current function)

is executing; other functions
may be waiting up the calling
chain

� Shaded areas: irrelevant to
the current function

� The current function sees
only the working stack, and
has access only to its memory
segments

� The rest of the stack holds
the frozen states of all the
functions up the calling
hierarchy.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 12

Implementing the call f nArgs command

Implementation: If the VM is implemented as a program
that translates VM code into assembly code, the
translator must emit the above logic in assembly.

// In the course of implementing the code of sub

// (the caller), we arrive to the command call f nArgs.

// we assume that nArgs arguments have been pushed

// onto the stack. What do we do next?

// We generate a label, let’s call it returnAddress;

// Next, we effect the following logic:

push returnAddress // saves the return address

push LCL // saves the LCL of f

push ARG // saves the ARG of f

push THIS // saves the THIS of f

push THAT // saves the THAT of f

ARG = SP-nArgs-5 // repositions SP for g

LCL = SP // repositions LCL for g

goto f // transfers control to g

(returnAddress) // the generated symbol

call f nArgs

None of this code is executed yet ...
At this point we are just generating
code (or simulating the VM code on
some platform)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 13

Implementing the function f nVars command

argument nArgs-1

ARG

saved THIS

saved ARG

 saved returnAddress

saved LCL

local 0

local 1

. . .
local nVars-1

argument 0

argument 1

. . .

frames of all the functions
up the calling chain

LCL

SP

saved THAT

Implementation: If the VM is implemented as a program
that translates VM code into assembly code, the
translator must emit the above logic in assembly.

function f nVars

// to implement the command function f nVars,

// we effect the following logic:

(f)

repeat nVars times:

push 0

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 14

Implementing the return command

Implementation: If the VM is implemented as a program
that translates VM code into assembly code, the
translator must emit the above logic in assembly.

// In the course of implementing the code of f,

// we arrive to the command return.

// We assume that a return value has been pushed

// onto the stack.

// We effect the following logic:

frame = LCL // frame is a temp. variable

retAddr = *(frame-5) // retAddr is a temp. variable

*ARG = pop // repositions the return value

// for the caller

SP=ARG+1 // restores the caller’s SP

THAT = *(frame-1) // restores the caller’s THAT

THIS = *(frame-2) // restores the caller’s THIS

ARG = *(frame-3) // restores the caller’s ARG

LCL = *(frame-4) // restores the caller’s LCL

goto retAddr // goto returnAddress

return

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 15

Bootstrapping

SP = 256 // initialize the stack pointer to 0x0100

call Sys.init // call the function that calls Main.main

A high-level jack program (aka application) is a set of class files.
By a Jack convention, one class must be called Main, and this class must have at

least one function, called main.

The contract: when we tell the computer to execute a Jack program,
the function Main.main starts running

Implementation:

� After the program is compiled, each class file is translated into a .vm file

� The operating system is also implemented as a set of .vm files (aka “libraries”)
that co-exist alongside the program’s .vm files

� One of the OS libraries, called Sys.vm, includes a method called init.
The Sys.init function starts with some OS initialization code (we’ll deal with this
later, when we discuss the OS), then it does call Main.main

� Thus, to bootstrap, the VM implementation has to effect (e.g. in assembly),
the following operations:

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 16

� Extends the VM implementation described in the last lecture (chapter 7)

� The result: a single assembly program file with lots of agreed-upon symbols:

VM implementation over the Hack platform

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 17

Proposed API

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 18

Perspective

Benefits of the VM approach

� Code transportability: compiling for
different platforms requires replacing only
the VM implementation

� Language inter-operability: code of multiple
languages can be shared using the same VM

� Common software libraries

� Code mobility: Internet

� Some virtues of the modularity implied by
the VM approach to program translation:

� Improvements in the VM
implementation are shared by all
compilers above it

� Every new digital device with a VM
implementation gains immediate access
to an existing software base

� New programming languages can be
implemented easily using simple
compilers

. . .

VM language

RISC
machine
language

Hack
CISC

machine
language

. . .
written in

a high-level
language

. . .

VM
implementation

over CISC

platforms

VM imp.
over RISC

platforms
TranslatorVM

emulator

Some Other
language Jack

Some
compiler Some Other

compiler
compiler

. . .Some

language
. . .

Benefits of managed code:

� Security

� Array bounds, index checking, …

� Add-on code

� Etc.

VM Cons

� Performance.

