
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 1

www.nand2tetris.org

Building a Modern Computer From First Principles

Virtual Machine
Part I: Stack Arithmetic

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 2

Where we are at:

Assembler

Chapter 6

H.L. Language

&

Operating Sys.

abstract interface

Compiler

Chapters 10 - 11

VM Translator

Chapters 7 - 8

Computer
Architecture

Chapters 4 - 5

Gate Logic

Chapters 1 - 3 Electrical

Engineering
Physics

Virtual

Machine

abstract interface

Software

hierarchy

Assembly

Language

abstract interface

Hardware

hierarchy

Machine

Language

abstract interface

Hardware

Platform

abstract interface

Chips &

Logic Gates

abstract interface

Human

Thought

Abstract design

Chapters 9, 12

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 3

Lecture plan

Arithmetic / Boolean commands

add

sub

neg

eq

gt

lt

and

or

not

Memory access commands

pop x (pop into x, which is a variable)

push y (y being a variable or a constant)

Program flow commands

label (declaration)

goto (label)

if-goto (label)

Function calling commands

function (declaration)

call (a function)

return (from a function)

This lecture Next lecture

Goal: Specify and implement a VM model and language:

Our game plan: (a) describe the VM abstraction (above)
(b) propose how to implement it over the Hack platform.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 4

Our VM model is stack-oriented

� The VM is an architecture in its own right.

� The VM architecture is an example of a CISC architecture.

� The Hack architecture is an example of a RISC architecture.

� Intel’s x86 architecture is a CISC architecture. x86 instructions are translated by
the hardware into RISC-like micro-ops. These micro-ops are the actual units of
execution within an x86 processor. In a sense, an x86 processor’s front-end
performs a VM translation analogous to the translation you’ll be working on.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 5

Memory access operations

The stack:

� A classical LIFO data structure

� Elegant and powerful

� Several hardware / software implementation options.

(before) (after)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 6

Evaluation of arithmetic expressions

// z=(2-x)-(y+5)
push 2
push x
sub
push y
push 5
add
sub
pop z

VM code (example)

(suppose that
x refers to static 0,
y refers to static 1, and
z refers to static 2)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 7

Evaluation of Boolean expressions

// (x<7) or (y=8)
push x
push 7
lt
push y
push 8
eq
or

VM code (example)

(suppose that
x refers to static 0, and
y refers to static 1)

(actually true and false
are stored as 0 and -1,
respectively)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 8

Arithmetic and Boolean commands in the VM language (wrap-up)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 9

Memory segments and memory access commands

Memory access VM commands:

� pop memorySegment index

� push memorySegment index

Where memorySegment is static, this, local, argument, that, constant, pointer, or temp

And index is a non-negative integer

Notes:

(In all our code examples thus far, memorySegment was static)

The different roles of the eight memory segments will become relevant when we’ll talk
about the compiler

At the VM abstraction level, all memory segments are treated the same way.

The VM abstraction includes 8 separate memory segments named:
static, this, local, argument, that, constant, pointer, temp

As far as VM programming commands go, all memory segments look and behave the same

To access a particular segment entry, use the following generic syntax:

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 10

Implementation

VM implementation options:

� Software-based (e.g. emulate the VM model using Java)

� Translator-based (e. g. translate VM programs into the Hack machine language)

� Hardware-based (realize the VM model using dedicated memory and registers)

Two well-known translator-based implementations:

JVM: Javac translates Java programs into bytecode;
The JVM translates the bytecode into
the machine language of the host computer

CLR: C# compiler translates C# programs into IL code;
The CLR translated the IL code into
the machine language of the host computer.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 11

VM implementation on the Hack platform

Basic idea: the mapping of the stack and the
global segments on the RAM is easy (fixed);
the mapping of the method-level segments is
dynamic, using pointers

The stack: mapped on RAM[256 ... 2047];
The stack pointer is kept in RAM address SP.
Local and argument segments mapped in here.

static: mapped on RAM[16 ... 255];
each segment reference static i appearing in a
VM file named f is compiled to the assembly
language symbol f.i

local,argument,this,that: these method-level
segments are mapped somewhere from address
2048 onward, in an area called “heap”. The base
addresses of these segments are kept in RAM
addresses LCL, ARG, THIS, and THAT. Access to
the i-th entry of any of these segments is
implemented by accessing RAM[segmentBase + i]

constant: a truly a virtual segment:
access to constant i is implemented by
supplying the constant i.

pointer: discussed later.

Statics

3

12

. . .

4

5

14

15

0

1

13

2

THIS

THAT

SP

LCL

ARG

TEMP

255

. . .
16

General

purpose

2047

. . .
256

2048

Stack

Heap. . .

Host

RAM

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 12

VM implementation on the Hack platform

Statics

3

12

. . .

4

5

14

15

0

1

13

2

THIS

THAT

SP

LCL

ARG

TEMP

255

. . .
16

General

purpose

2047

. . .
256

2048

Stack

Heap. . .

Host

RAM

Practice exercises

Now that we know how the memory segments are
mapped on the host RAM, we can write Hack
commands that realize the various VM commands.
for example, let us write the Hack code that
implements the following VM commands:

� push constant 1

� pop static 7 (suppose it appears in a VM file named f)

� push constant 5

� add

� pop local 2

� eq

Tips:

1. The implementation of any one of these VM
commands requires several Hack assembly
commands involving pointer arithmetic
(using commands like A=M)

2. If you run out of registers (you have only two ...),
you may use R13, R14, and R15.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 13

Proposed VM translator implementation: Parser module

Parser: Handles the parsing of a single .vm file, and encapsulates access to the input code. It reads VM commands,

parses them, and provides convenient access to their components. In addition, it removes all white space and comments.

Routine Arguments Returns Function

Constructor
Input file /

stream
--

Opens the input file/stream and gets ready to

parse it.

hasMoreCommands -- boolean Are there more commands in the input?

advance -- --

Reads the next command from the input and

makes it the current command. Should be called

only if hasMoreCommands is true.

Initially there is no current command.

commandType --

C_ARITHMETIC, C_PUSH,

C_POP, C_LABEL, C_GOTO,

C_IF, C_FUNCTION,

C_RETURN, C_CALL

Returns the type of the current VM command.

C_ARITHMETIC is returned for all the arithmetic

commands.

arg1 -- string

Returns the first arg. of the current command.

In the case of C_ARITHMETIC, the command itself

(add, sub, etc.) is returned. Should not be called

if the current command is C_RETURN.

arg2 -- int

Returns the second argument of the current

command. Should be called only if the current

command is C_PUSH, C_POP, C_FUNCTION, or

C_CALL.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 14

Proposed VM translator implementation: CodeWriter module

CodeWriter: Translates VM commands into Hack assembly code.

Routine Arguments Returns Function

Constructor Output file / stream -- Opens the output file/stream and gets ready to

write into it.

setFileName fileName (string) -- Informs the code writer that the translation of a

new VM file is started.

writeArithmetic command (string) -- Writes the assembly code that is the translation

of the given arithmetic command.

WritePushPop command (C_PUSH or

C_POP),

segment (string),

index (int)

-- Writes the assembly code that is the translation

of the given command, where command is either

C_PUSH or C_POP.

Close -- -- Closes the output file.

Comment: More routines will be added to this module in the next lecture / chapter 8.

