Question Set 5

CS 420

Chapter 5

1. Given

 $\vec{\mathbf{o}}^t = \vec{\mathbf{w}}^t O$ $\vec{\mathbf{e}}^t = \vec{\mathbf{w}}^t E$

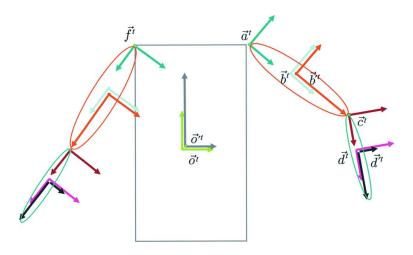
If $\tilde{p} = \vec{\mathbf{o}}^t \mathbf{c}$

- (a) What are \tilde{p} 's world coordinates?
- (b) What are \tilde{p} 's eye coordinates?
- 2. In a right-handed coordinate system, imagine a cube 6 ft. in front of your eyes. $\vec{\mathbf{e}}^{t}$'s origin is between your eyes, with its *x*-axis to the right and its *y*-axis up. $\vec{\mathbf{o}}^{t}$'s origin is the center of the cube, with its *x*-axis pointing at $\vec{\mathbf{e}}^{t}$'s origin and its *y*-axis to the left.
 - (a) For each frame, describe the z-axis.
 - (b) The cube is translated 6 units along the x-axis with respect to $\vec{\mathbf{o}}^t$. Describe its new position.
 - (c) From its original position, the cube is rotated $\pi/2$ radians (90 degrees) about the *y*-axis with respect to $\vec{\mathbf{e}}^t$. Describe its new position.
- 3. Watch the *Respect the Frame* video, available from the course web site on phoenix. What frame is used in Version 1, resulting in incorrect behavior? What frame is used in Version 2, resulting in correct behavior?
- 4. Show how to apply a transformation M to $\vec{\mathbf{o}}^t$ with respect to $\vec{\mathbf{a}}^t$.
- 5. Explain how $\vec{\mathbf{a}}^t = \vec{\mathbf{w}}^t(O)_T(E)_R$ gives us an auxiliary basis that has $\vec{\mathbf{o}}^t$'s origin and $\vec{\mathbf{e}}^t$'s orientation. How do we construct $(O)_T$ and $(E)_R$?
- 6. Given $\vec{\mathbf{e}}^t = \vec{\mathbf{w}}^t E$ with E such that the eye is located at [0, 0, 5], pointed at [0, 0, 0] (the origin of $\vec{\mathbf{w}}^t$), with an up vector of [0, 1, 0]. Let R be a rotation transformation of $\pi/2$ radians (90 degrees) about the y-axis. Let $\vec{\mathbf{a}}^t = \vec{\mathbf{w}}^t A$ where $A = (W)_T(E)_R$. (W = I; I is the identity matrix.)

Describe the effect of performing the updates

- (a) $E \leftarrow ER$ (corresponding to the transformation $\vec{\mathbf{e}}^t = \vec{\mathbf{w}}^t E \Rightarrow \vec{\mathbf{w}}^t ER$)
- (b) $E \leftarrow ARA^{-1}E$ (corresponding to the transformation $\vec{\mathbf{e}}^t = \vec{\mathbf{w}}^t E \Rightarrow \vec{\mathbf{w}}^t ARA^{-1}E$)

7. Consider this robot:



where

- (a) $\vec{\mathbf{o}}^t = \vec{\mathbf{w}}^t O$ (torso frame)
- (b) $\vec{\mathbf{a}}^t = \vec{\mathbf{o}}^t A$ (right shoulder joint frame)
- (c) $\vec{\mathbf{b}}^t = \vec{\mathbf{a}}^t B$ (right upper-arm frame)
- (d) $\vec{\mathbf{c}}^t = \vec{\mathbf{a}}^t C$ (right elbow joint frame)

What is the advantage of expressing $\vec{\mathbf{a}}^t$ with respect to $\vec{\mathbf{o}}^t$, rather than respect to $\vec{\mathbf{w}}^t$?