
Project 6: Assembler

CS 220

Background

Low-level machine programs are rarely written by humans. Typically, they are generated by com-
pilers. Yet humans can inspect the translated code and learn important lessons about how to write
their high-level programs better, in a way that avoids low-level pitfalls and exploits the underlying
hardware better. One of the key players in this translation process is the assembler — a program
designed to translate code written in a symbolic machine language into code written in binary
machine language.

This project marks an exciting landmark in our Nand2Tetris odyssey: it deals with building the
first rung up the software hierarchy, which will eventually end up in the construction of a compiler
for a Java-like high-level language. But, first things first.

Objective

Write an Assembler program that translates programs written in the symbolic Hack assembly
language into binary code that can execute on the Hack hardware platform built in the previous
projects.

Contract

There are three ways to describe the desired behavior of your assembler:

1. When loaded into your assembler, a Prog.asm file containing a valid Hack assembly lan-
guage program should be translated into the correct Hack binary code and stored in a
Prog.hack file.

2. The output produced by your assembler must be identical to the output produced by the
Assembler supplied with the Nand2Tetris Software Suite.

3. Your assembler must implement the translation specification given in Chapter 6, Section 2.

Resources

The relevant reading for this project is Chapter 6. Your assembler implementation can be written
in any programming language, but check with me before using any programming language other
than Java. We’ve provided starter code for an Eclipse Java project. Two useful tools are the
supplied Assembler and the supplied CPU Emulator. These tools allow experimenting with a
working assembler before setting out to build one yourself. In addition, the supplied assembler
provides a visual line-level translation GUI, and allows code comparisons with the outputs that
your assembler will generate. For more information about these capabilities, refer to the supplied
Assembler Tutorial from Project 4.

1

Proposed Implementation

Section 6.3 includes a proposed, language-independent Assembler API, which can serve as your
implementation’s blueprint. We suggest building the assembler in two stages. First, write a basic
assembler designed to translate assembly programs that contain no symbols. Next, extend your
basic assembler with symbol handling capabilities, yielding the final assembler. The test programs
that we supply below are designed to support this staged implementation strategy.

Section 6.3 mentions the usefulness of a hash table in implementing the symbol table. I found
Java’s HashTable class quite useful. I also used the HashTable class in my Code class; in fact, I
used three of them.

Test Programs

Each test program except the first one comes in two versions: Prog.asm is an assembly program;
ProgL.asm is the very same program, Less the symbols (each symbol is replaced with an explicit
memory address).

The Pong program supplied above was written in the Java-like high-level Jack language and
translated into the Hack assembly language by the Jack compiler (Jack and the Jack compiler are
described in Chapter 9 and in Chapters 10–11, respectively). Although the original Jack program is
only about 300 lines of Jack code, the executable Pong code is naturally much longer. Running this
interactive program in the supplied CPU Emulator is a slow affair, so don’t expect a high-powered
Pong game. This slowness is actually a virtue, since it enables your eye to track the graphical
behavior of the program. As we continue to build the software platform in the next few projects,
Pong and and other games will run much faster.

Tools

The supplied Hack Assembler shown below is guaranteed to generate correct binary code. This
guaranteed performance can be used to test if another assembler, say the one written by you, also
generates correct code. The following screen shot illustrates the comparison process:

2

The comparison logic: Let Prog.asm be some program written in the symbolic Hack assembly
language. Suppose we translate this program using the supplied assembler, producing a binary file
called Prog.hack. Next, we use another assembler (e.g. the one that you wrote) to translate the
same program into another file, say MyProg.hack. Now, if the latter assembler is working correctly,
it follows that Prog.hack == MyProg.hack. Thus, one way to test a newly written assembler is as
follows:

1. load into the supplied visual assembler Prog.asm as a source program and MyProg.hack as a
compare file,

2. translate the source program, and

3. compare the resulting binary code with the compare file (see the figure above). If the com-
parison fails, the assembler that generated MyProg.hack must be buggy; otherwise, it may
be OK.

Submission and Assessment

If you can’t finish the project on time, submit what you’ve managed to do, and relax. All the
projects in this course are highly modular, with incremental test files. Each hardware project
consists of many chip modules (*.hdl programs), and each software project consists of many
software modules (classes and methods). It is best to treat each project as a modular problem set,
and try to work out as many problems as you can. You will get partial credit for partial work.

What if your chip or program is not working? It’s not the end of the world. Hand in whatever
you did, and explain what works and what doesn’t in a README file. If you want, you can also

3

supply test files that you developed, to demonstrate working and non-working parts of your project.
Instead of trying to hide the problem, be explicit and clear about it. You will get partial credit for
your work.

See the next page for the assessment rubric. Submit the following as a single Eclipse ZIP archive
in Canvas:

1. A README file containing the names of all group members. This file may also contain
other information, as described above. Create this file as a new Untitled Text File in your
Eclipse project.

2. Your Eclipse project.

3. Nothing else.

4

Project 6: Assembler

Student name(s): __

Grading method: As usual with programming assignments, we look for elegance, clarity,

reasonable documentation, and neatness.

Assembler Working? Comments

Working?

/ 75

Well built?

/ 25

Total

/ 100

Total grade: ______________________

