Project 2: Combinational Chips

CS 220

Background

The centerpiece of the computer’s architecture is the CPU, or Central Processing Unit, and the
centerpiece of the CPU is the ALU, or Arithmetic-Logic Unit. In this project you will gradually
build a set of chips, culminating in the construction of the ALU chip of the Hack computer. All the
chips built in this project are standard, except for the ALU itself, which differs from one computer
architecture to another.

Objective

Build all the chips described in Chapter 2 (see list below), leading up to an Arithmetic Logic Unit
- the Hack computer’s ALU. The only building blocks that you can use are the chips described in
Chapter 1 and the chips that you will gradually build in this project.

Chips
Chip (HDL) Description Test script Compare file
HalfAdder Half Adder HalfAdder.tst  HalfAdder.cmp
FullAdder Full Adder FullAdder.tst FullAdder.cmp
Add16 16-bit Adder Add16.tst Add16.cmp
Inc16 16-bit incrementer Inc16. tst Inc16.cmp
ALU Arithmetic Logic Unit (without handling of status outputs) AlLU-nostat.tst  ALlU-postat.cmp
ALU Arithmetic Logic Unit {complete) ALLL tst ALU.cmp

Proposed Implementation

As usual, we propose building the chips in the order listed above.

The Hack ALU produces two kinds of outputs: a “main” 16-bit output resulting from operating
on the two 16-bit inputs, and two 1-bit “status outputs” named zr and ng. We recommend building
this functionality in two stages. In stage one, implement an ALU that computes and outputs the
16-bit output only, ignoring the zr and ng status outputs. Once you get this implementation right
(that is, once your ALU.hdl code passes the ALU-nostat test), extend your code to handle the
two status outputs as well. This way, any problems detected by ALU.tst can be attributed to the
incremental code that you’ve added in stage two. We thank Mark Armbrust for proposing this
staged implementation plan, and for supplying the test files to support it.

Contract

When loaded into the supplied Hardware Simulator, your chip design (modified .hdl program),
tested on the supplied .tst script, should produce the outputs listed in the supplied .cmp file. If
that is not the case, the simulator will let you know.



Resources

The relevant reading for this project is Chapter 2 and Appendix A. Specifically, all the chips
described in Chapter 2 should be implemented in the Hardware Description Language (HDL)
specified in Appendix A.

For each chip, we supply a skeletal .hdl file with a missing implementation part. In addition,
for each chip we supply a .tst script that instructs the hardware simulator how to test it, and a
.cmp (“compare file”) containing the correct output that this test should generate. Your job is to
complete and test the supplied skeletal .hdl files.

The resources that you need for this project are the supplied Hardware Simulator and the files
listed above. You’ll find the necessary project directory and files in a ZIP file on the course web
site.

Tips

Use built-in chips: Your HDL programs will most likely include chip parts that you've built in
Project 1. As a rule, though, we recommend using the built-in versions of these chips instead. The
use of built-in chips ensures correct, efficient, and predictable simulation. There is a simple way
to accomplish this convention: make sure that your project directory includes only the .hdl files of
the chips developed in the current project.

Implementation order: We recommend building the chips in the order in which they appear
in Chapter 2. However, since the simulator features built-in versions of these chips, you can
use chip-parts without first building them: the simulator will automatically use their built-in
implementations.

Submission and Assessment

If you can’t finish the project on time, submit what you’ve managed to do, and relax. All the
projects in this course are highly modular, with incremental test files. Each hardware project
consists of many chip modules (*.hdl programs), and each software project consists of many
software modules (classes and methods). It is best to treat each project as a modular problem set,
and try to work out as many problems as you can. You will get partial credit for partial work.

What if your chip or program is not working? It’s not the end of the world. Hand in whatever
you did, and explain what works and what doesn’t in a README file. If you want, you can also
supply test files that you developed, to demonstrate working and non-working parts of your project.
Instead of trying to hide the problem, be explicit and clear about it. You will get partial credit for
your work.

See the next page for the assessment rubric. Submit the following as a single ZIP archive in
Canvas:

1. A README file containing the names of all group members. This file may also contain other
information, as described above.

2. All your HDL files.

3. Nothing else.



Project 2: Combinational Chips

Student name(s):

Grading method: The implementation of some chips was described in the book, and some chips
are simpler than others. The different weights assigned to the chips below reflect this variance. If
the chip passes all the tests specified in the supplied test script, it receives two thirds of its
allotted points. The remaining third reflects our evaluation of the way the chip is built.

Generally speaking, we prefer implementations that use as few chip parts as possible, even if it
implies a less efficient chip design.

Chip Working? | Well built? Comments
HalfAdder /6 /3
FullAdder /8 /4
Add16 /8 /4
Inc16 /10 /5
ALU /35 /17
Total /67 /33

Total grade:




