
Selection Problems

int FindMax(int[] list,int low, int high){
int max = low;
for(int i=low+1;i<=high; i++)

if (list[i]>list[max])
max = i;

return max;
}

What is the cost? Is this optimal?

Proof of Lower Bound

int FindMax(int[] list,int low, int high){
int max = low;
for(int i=low+1;i<=high; i++)

if (list[i]>list[max])
max = i;

return max;
}

What is the flaw of this argument?

The winner must compare against all other
elements, so there must be n − 1 comparisons.

Partial Ordered Sets (Posets)

What posets with 4 elements find a winner
besides this one? (ignore symmetries)

Suppose n opponents have matches to determine
the winner.

a b c d
a

b

c

d

d

a

b c

a beats b
c beats d

=> a beats c =>

Lower Bound of FindMax

Why can we now argue that this will require
n-1 comparisons?

To find the max, we must build a poset having one
max and n − 1 losers, starting from a poset of
n singletons. We wish to connect the elements of the
poset with the minimum number of links.

a b c d
a

b

c

d

d

a

b c

a beats b
c beats d

=> a beats c =>

Selection Problems – Finding 2nd Best

Algorithm: Find the max and discard it and then
find the max of what is left

What is the cost? Is this optimal?

Proof of lower bound– Finding 2nd Best

Lower bound:
Anyone who lost to anyone who is not the max
cannot be second.
So, the only candidates are those who lost to
max.
Findmax might compare max to n − 1 others.
Thus, we might need n − 2 additional
comparisons to find second

What is wrong with this argument?

Selection Problems – Finding 2nd Best

Alternative: Divide and conquer
Break the list into two halves.
Use Findmax on each half.
Compare the winners.
Use Findmax on the winner’s half for second.
Compare that second to second winner.

What is the cost? Is this optimal?

Selection Problems – Finding 2nd Best

Alternative: Divide and conquer
Break the list into two halves.
Use Findmax on each half.
Compare the winners.
Use Findmax on the winner’s half for second.
Compare that second to second winner.

What if we break the list into four pieces?
Eight pieces?

Binomial Trees

The only candidates for second are losers to the eventual
winner. Have the contest form a binomial tree:
A binomial tree of height m has 2m nodes organized as:

• a single node, if m = 0, or
• two height m − 1 binomial trees with one tree’s

root becoming a child of the other.

If n nodes, how many candidates for second best?

Binomial Trees

Algorithm:
Build the binomial tree.
Compare the ⌈logn⌉ children of the root for second.

Cost?

Adversarial Lower Bounds Proof

The algorithm asks the adversary for information about the
input. The adversary may never lie.
Imagine that the adversary keeps a list of all possible
inputs. When the algorithm asks a question, the adversary
answers, and crosses out all remaining inputs inconsistent
with that answer.
The adversary is permitted to give any answer that is
consistent with at least one remaining input.

Explain how an adversary would make an algorithm
work as hard as possible in a game of Hangman?

Adversary for 2nd Max

At least n − 1 values must lose at least once so at least n − 1
compares.
Have k direct losers to the winner which must be compared
for possibilities for 2nd max.
There must be at least n + k − 2 comparisons.

What question are we asking for a lower bound
proof ?

Adversary for 2nd Max

Call the strength of element L[i] the number of elements
L[i] is (known to be) bigger than. If L[i] has strength a, and
L[j] has strength b, then the winner has strength a + b + 1.

The adversary wants to minimize the rate at which an
element gets stronger.

So on a contest between two candidates which
one will the adversary pick as the winner?
Why?

Adversary for 2nd Max

So at each contest, an element’s strength at most doubles.
After k comparisons an elements strength is less than or
equal to 2k.

What is the lowest value we can have for k as
losers to the max?

