
Linear Search

int search(int[] list, int target, int n)
{
for (int i=1; i<=n; i++)

if (target == list[i]) return i;
return -1;

}

Order of growth for worst case?



Lower Bound on Searching an 
Unordered List

Can you find a flaw in that argument? 
There is one!

Prove we can’t do any better than T(n)=n by 
showing that any algorithm with less than n 
comparisons will be incorrect for some list L.
Suppose algorithm has n-1 comparisons (or less).
Then there exists an element of L which is never 
compared to the target. So if that is the one that we 
are searching for the algorithm fails.



Lower Bound on Searching an 
Unordered List

Preprocessing splits L into m “pieces” which are 
“connected” by comparisons.  What is the minimum 
number of comparisons for m pieces?

Prove we can’t do any better than T(n)=n by 
showing that any algorithm with less than n 
comparisons will be incorrect for some list L.
Try 2:  Suppose algorithm does k comparisons of 
preprocessing L and j comparisons with target.



Lower Bound on Searching an 
Unordered List

Preprocessing splits L into m “pieces” which are 
“connected” by comparisons.  What is the minimum 
number of comparisons for comparing the target?

Prove we can’t do any better than T(n)=n by 
showing that any algorithm with less than n 
comparisons will be incorrect for some list L.
Try 2:  Suppose algorithm does k comparisons of 
preprocessing L and j comparisons with target.



Lower Bound on Searching an 
Unordered List

Given the previous two answers, why must j+k be at 
least n?

Prove we can’t do any better than T(n)=n by 
showing that any algorithm with less than n 
comparisons will be incorrect for some list L.
Try 2:  Suppose algorithm does k comparisons of 
preprocessing L and j comparisons with target.



Binary Search on sorted list

int Bsearch(int[] list, int target, int low, int high){
if (low == high)

if  target == list[low]) return low;
else return -1;

else {
mid = floor((low+high)/2);
if (target > list[mid] 

return Bsearch(list,target,mid+1,high);
else

return Bsearch(list,target,low,mid);
}

}

Give the recurrence relation for worst case number
of comparison tests.



Binary Search on sorted list

T(1) = 1
T(n) = T(n/2) + 1

Solve the recurrence to get the number of 
comparisons we are doing.



Decision Tree for Linear Search

What would a decision tree for Binary Search 
look like?



Lower Bound on Search

Use induction to show that a binary tree of height h 
has at most 2h+1 – 1 nodes.

Given ANY algorithm for search, look at the 
decision tree to determine the worst case.

We need to know facts about trees.



Lower Bound on Search

What is the minimum height of a decision tree
with n nodes?  Why?

Given ANY algorithm for search, look at the 
decision tree to determine the worst case.

A binary tree of height h has at most 2h+1 – 1 
nodes.



Binary Search is Optimal!
But wait… that is assuming that all we can do is 
compare values.
Which of the following would change the 
analysis?
A. Data is not sorted or sortable
B. Data is sorted but in a data structure where it 

does not cost the same to get at each location
C. Data is static so we know all possible search 

requests
D. All of the above


