
Graphs
We can represent a graph with an adjacency list

How much space does it take to represent a graph
with V vertices and E edges using adjacency lists?

Graphs
We can represent a graph with an adjacency matrix

How much space does it take to represent a graph
with V vertices and E edges using adjacency
matrix?

Graphs
We can represent a graph with an adjacency list

How much time does it take to add an edge (u,v) to
a graph with V vertices and E edges using an
adjacency list representation?

Graphs
We can represent a graph with an adjacency matrix

How much time does it take to add an edge (u,v) to
a graph with V vertices and E edges using an
adjacency matrix representation?

Graphs
We can represent a graph with an adjacency list

How much time to determine if there is an edge (u,v)
in a graph with V vertices and E edges using an
adjacency list, assuming that the degree of u is k?

Graphs
We can represent a graph with an adjacency matrix

How much time to determine if there is an edge (u,v)
in a graph with V vertices and E edges using an
adjacency matrix, assuming that the degree of u is k?

Graph Traversals
Tricolor algorithm:
White nodes are undiscovered nodes that have not been seen yet in the current
traversal and may even be unreachable.
Black nodes are nodes that are reachable and that the algorithm is done with.
Gray nodes are nodes that have been discovered but that the algorithm is not
done with yet. These nodes are on a frontier between white and black.

What different ways can we choose
gray node n?

The algorithm pseudo-code is as follows:
Color all nodes white, except for the root nodes, which are colored gray.
While some gray node n exists:

color some white successors of n gray.
if n has no white successors, optionally color n black.

Depth First Search

Trace through the algorithm with this
graph marking vertices gray and black.
What order do they become gray?
What order do they become black?

DFS(Vertex v) {
set color of v to gray
for each successor v' of v {

if v' not yet visited {
DFS(v') }

}
set color of v to black

}

DFS

How many calls to DFS are made by
the algorithm if we have V vertices and
E edges?

DFS(Vertex v) {
set color of v to gray
for each successor v' of v {

if v' not yet visited {
DFS(v') }

}
set color of v to black

}

DFS

What is the total number of times the for
loop will be iterated in the algorithm if we
have V vertices and E edges?

DFS(Vertex v) {
set color of v to gray
for each successor v' of v {

if v' not yet visited {
DFS(v') }

}
set color of v to black

}

DFS

What is the order of growth for the time if
we have V vertices and E edges?

DFS(Vertex v) {
set color of v to gray
for each successor v' of v {

if v' not yet visited {
DFS(v') }

}
set color of v to black

}

Connected Components

How can we use DFS to determine the
number of connected components in a
graph? Write the algorithm

Topological Sort

Give some ordering of these 7 steps that
make sense.

Topological Sort

Perform a DFS on this graph and note the
order in which nodes get marked black.
What is your order?

Topological Sort

How can we use DFS to give a topological
ordering? Write the algorithm

DFS – Edge Classification

What do we know about a directed graph
with no back edges?

Tree Edge: Destination node is white
Back Edge: Destination node is gray
Forward/Cross: Destination is black
Cross if goes from one tree to another

Detect Cycles

How can we use DFS to determine if there
is a cycle? Write the algorithm

Tree Edge: Destination node is white
Back Edge: Destination node is gray
Forward/Cross: Destination is black
Cross if goes from one tree to another

Breadth First Search
Trace through the
algorithm with this graph
marking vertices gray and
black.
What order do they
become gray? What order
do they become black?

BFS(Vertex root) {
frontier = new Queue()
mark root as gray
frontier.enqueue(root)
while frontier not empty {

Vertex v = frontier.dequeue()
for each successor v' of v {

if v' white {
frontier.enqueue(v')
mark v' gray

}
}
mark v as black

}
}

Breadth First Search
How can we use BFS to
find the shortest path (least
number of edges) from a
given vertex to a second
vertex?

BFS(Vertex root) {
frontier = new Queue()
mark root as gray
frontier.enqueue(root)
while frontier not empty {

Vertex v = frontier.dequeue()
for each successor v' of v {

if v' white {
frontier.enqueue(v')
mark v' gray

}
}
mark v as black

}
}

