
Minimum Spanning Trees

Is this a problem we can solve by brute 
force? Why or why not?

Given a connected graph with weighted edges, find a tree 
that connects all the vertices and the total weight is 
minimized.



Minimum Spanning Trees

What do we know about the weight of f 
compared to the weight of e? Why?

Cut property: Let S be any subset of vertices, and let e be the 
min cost edge with exactly one endpoint in S. Then the MST 
T* contains e.

Proof by Contradiction:
Suppose e does not belong to T*.
Let's see what happens. 
Adding e to T* creates a (unique) cycle C in T*
Some other edge in C, say f, has exactly one 
endpoint in S.
T = T* ∪{ e } - { f } is also a spanning tree.



Minimum Spanning Trees

Why do we get a contradiction?

Cut property: Let S be any subset of vertices, and let e be the 
min cost edge with exactly one endpoint in S. Then the MST 
T* contains e.

Proof by Contradiction:
Suppose e does not belong to T*.
Let's see what happens. 
Adding e to T* creates a (unique) cycle C in T*
Some other edge in C, say f, has exactly one 
endpoint in S.
T = T* ∪{ e } - { f } is also a spanning tree.



Minimum Spanning Trees

Why do we get a contradiction?

Cycle property. Let C be any cycle in G, and let f be the max 
cost edge belonging to C. Then the MST T* does not contain f.

Proof by Contradiction:
Suppose f belongs to T*. 
Let's see what happens. 
Deleting f from T* disconnects T*. 
Let S be one side of the cut. 
Some other edge in C, say e, has exactly one 
endpoint in S.
T = T* ∪{ e } - { f } is also a spanning tree.



Minimum Spanning Trees

What tree would Kruskal
give us?

Kruskal's algorithm: Consider edges in ascending order of cost. 
Add the next edge to T unless doing so would create a cycle.



Minimum Spanning Trees

Why must e be the max weight edge in C?
Why must e NOT be in the MST?

Kruskal's algorithm: Consider edges in ascending order of cost. 
Add the next edge to T unless doing so would create a cycle.

Prove that Kruskal's algorithm computes the 
MST: 
Case 1:  Adding e to T creates a cycle C



Minimum Spanning Trees

Why must e be the min weight edge with exactly 
one endpoint in S?
Why must e be in the MST?

Kruskal's algorithm: Consider edges in ascending order of cost. 
Add the next edge to T unless doing so would create a cycle.

Prove that Kruskal's algorithm computes the 
MST: 
Case 2:  Adding e = (v, w) to T does not create 

a cycle



Kruskal Implementation and Cost

How could we use DFS to check if adding an 
edge creates a cycle?  What would be the cost per 
cycle check?  What would be the overall cost?

Kruskal's algorithm: Consider edges in ascending order of cost. 
Add the next edge to T unless doing so would create a cycle.



Kruskal Implementation and Cost

If have edge e=(v,w) and we see that v and w are 
in the same connected component, what does this 
tell us?  If in different components, what does 
this tell us?

Kruskal's algorithm: Consider edges in ascending order of cost. 
Add the next edge to T unless doing so would create a cycle.

Perhaps we can do better.
Proposal:  Maintain sets for each connected component of the 
edges T.



Union-Find Algorithms

We could store set name of element i in array X[i]

Give the order of growth for each of the operations.

MakeSet(x) creates a new set containing x
Union(x,y) results in the union of the set containing x with the          

set containing y.
FindSet(x) returns the set containing x



Union-Find Algorithms

Give the order of growth for 
each of the operations.

MakeSet(x) creates a new set containing x
Union(x,y) results in the union of the set containing x with the          

set containing y.
FindSet(x) returns the set containing x



Kruskal Implementation and Cost

What is the order of growth for Kruskal?

Kruskal's algorithm: Consider edges in ascending order of cost. 
Add the next edge to T unless doing so would create a cycle.

Perhaps we can do better.
Proposal:  Maintain sets for each connected component of the 
edges T.



Minimum Spanning Trees

What tree would Prim’s 
give us if we started with 
vertex A?

Prim’s algorithm: Start with a chosen root vertex and greedily 
grow tree T. At each step, add cheapest edge that has exactly 
one endpoint in T.



Minimum Spanning Trees

Why must e be in the MST?

Prim’s algorithm: Start with a chosen root vertex and greedily 
grow tree T. At each step, add cheapest edge that has exactly 
one endpoint in T.

Prove that Prim's algorithm computes the 
MST: 
Let S be the subset of vertices in current tree 
T.
Prim adds the cheapest edge e with exactly 
one endpoint in S.



Prim Implementation and Cost

What is the order of growth for delete min?
What is the overall order of growth for Prim’s?

Prim’s algorithm: Start with a chosen root vertex and greedily 
grow tree T. At each step, add cheapest edge that has exactly 
one endpoint in T.

To find the cheapest edge with exactly one endpoint in S:
Maintain edges with (at least) one endpoint in S in a heap (priority 
queue) 
Delete min to determine next edge e to add to T. 
Disregard e if both endpoints are in S. 
Upon adding e to T, add to PQ the edges incident to one endpoint.


