
Single Source Shortest Path

Why must we assume that the graph has no 
cycles with a negative weight?

Find distance (and shortest path) from s to every other vertex in 
a weighted graph.



Edge Relaxation

Write the code which will change dist and pred if 
needed

For all v, dist[v] is the length of some path from s to v.
Relaxation along edge e from v to w:
Relaxation sets dist[w] to the length of a shorter path from s to 
w (if v-w gives one)



Dijkstra's algorithm

Why do you think w can be added to S?

S: set of vertices for which the shortest path length from s is 
known.

Initialize S to s, dist[s] to 0, dist[v] to ∞ for all other v 
Repeat until S contains all vertices connected to s 

find e with v in S and w not in S that minimizes dist[v] + e.weight()
relax along that edge 
add w to S



Dijkstra's algorithm proof of correctness

Why is the path P* shorter than the path P?

Proof. (by induction on size of S) 
Let w be next vertex added to S. 
Let P* be the s-w path through v. 
Consider any other s-w path P, and let x be first node on path outside S. 



Dijkstra's Implementation and Cost

What data structure should we use to maintain 
dist?  Hint: We need to extract the minimum.

Initialize S to s, dist[s] to 0, dist[v] to ∞ for all other v 
Repeat until S contains all vertices connected to s 

find e with v in S and w not in S that minimizes dist[v] + e.weight()
relax along that edge 
add w to S



Dijkstra's Implementation and Cost

How many times is each edge examined (and 
relaxed)?

Initialize S to s, dist[s] to 0, dist[v] to ∞ for all other v 
Repet until S contains all vertices connected to s 

find e with v in S and w in S’ that minimizes dist[v] + e.weight()           
relax along that edge 
add w to S

Initialize S to s, dist[s] to 0, dist[v] to ∞ for all other v 
Repeat until S contains all vertices connected to s 

find e with v in S and w not in S that minimizes dist[v] + e.weight()
relax along that edge 
add w to S



Dijkstra's Implementation and Cost

What is the cost of extractMin (if using a heap)?

Initialize S to s, dist[s] to 0, dist[v] to ∞ for all other v 
Repeat until S contains all vertices connected to s 

find e with v in S and w in S’ that minimizes dist[v] + e.weight()           
relax along that edge 
add w to S

Initialize S to s, dist[s] to 0, dist[v] to ∞ for all other v 
Repeat until S contains all vertices connected to s 

find e with v in S and w not in S that minimizes dist[v] + e.weight()
relax along that edge 
add w to S



Dijkstra's Implementation and Cost

When we relax an edge we need to adjust the 
heap.  What is the cost of this?

Initialize S to s, dist[s] to 0, dist[v] to ∞ for all other v 
Repeat until S contains all vertices connected to s 

find e with v in S and w in S’ that minimizes dist[v] + e.weight()           
relax along that edge 
add w to S

Initialize S to s, dist[s] to 0, dist[v] to ∞ for all other v 
Repeat until S contains all vertices connected to s 

find e with v in S and w not in S that minimizes dist[v] + e.weight()
relax along that edge 
add w to S



Dijkstra's Implementation and Cost

Putting it all together, what is the total order of 
growth?

Initialize S to s, dist[s] to 0, dist[v] to ∞ for all other v 
Repeat until S contains all vertices connected to s 

find e with v in S and w in S’ that minimizes dist[v] + e.weight()           
relax along that edge 
add w to S

Initialize S to s, dist[s] to 0, dist[v] to ∞ for all other v 
Repeat until S contains all vertices connected to s 

find e with v in S and w not in S that minimizes dist[v] + e.weight()
relax along that edge 
add w to S



Graph Search algorithms

Bask in the glory of graph search!

Insight: All of our graph-search methods are the same algorithm! 
Maintain a set of explored vertices S Grow S by exploring edges with 
exactly one endpoint leaving S. 

DFS. Take edge from vertex which was discovered most recently. 
BFS. Take from vertex which was discovered least recently. 
Prim. Take edge of minimum weight. 
Dijkstra. Take edge to vertex that is closest to s.


