
Dynamic Programming

Try to solve this for n=5 and p1=1,p2=5,p3=8,p4=9,p5=10 

Rod Cutting Example 
We are given a rod of length n and a table of prices pi for i = 1, . . . , n; 
pi is the price of a rod of length i. 
Goal is to determine the maximum revenue rn, obtainable by cutting up 
the rod and selling the pieces

We want to find the choices that maximize or minimize some 
quantity. 



Dynamic Programming

Notice that if the optimal solution has a cut of length i, 
and we took away that length i, what remains must be an 
optimal solution for a rod of length n′ = n-i. Why? 

We want to find the choices that maximize or minimize some 
quantity. 

Rod Cutting Example 
We are given a rod of length n and a table of prices pi for i = 1, . . . , n; 
pi is the price of a rod of length i. 
Goal is to determine the maximum revenue rn, obtainable by cutting up 
the rod and selling the pieces



Dynamic Programming

Write a recursive algorithm R(n, p[1..n]) which does this

Rod Cutting Example: 
We are given a rod of length n and a table of prices pi for i = 1, . . . , n;
Goal is to determine the maximum revenue rn, obtainable by cutting up 
the rod and selling the pieces

We can recursively define a solution by figuring out where to make the 
first cut to maximize our possibilities with what’s leftover.
We want the maximum of 
p1 +R(n−1),p2 +R(n−2),p3 +R(n−3),...,pn−1 +R(1),pn

We want to find the choices that maximize or minimize some 
quantity. 



Dynamic Programming

If we called R(4), how many times each would R(1), R(2), 
and R(3) be called?

R(n, p[1..n]){
if (n==1): return p[1] 
else{   max = 0; 

for i = 1 to n{
x= p[i]+R(n-i) 

if(x>max): max=x 
}
return x 

}

We want to find the choices that maximize or minimize some 
quantity. 



Bottom-up Dynamic Programming

Iteratively fill in r array by calculating r[1],r[2],r[3] . . .for 
n=5 and p1=1,p2=5,p3=8,p4=9,p5=10 

R(n, p[1..n]){
r[0] = 0 
for (j=1; j<=n; j++){

max = 0;
for (i=1; i<=j; i++){

x= p[i]+r[j-i]
if(x>max): max=x 

}
r[j] = max

}
return r[n] }

Don’t wait until until a subproblem is encountered. Solve smallest 
subproblems first and combine solutions of small subproblems to 
solve larger ones.



Bottom-up Dynamic Programming

What is the order of growth?

R(n, p[1..n]){
r[0] = 0 
for (j=1; j<=n; j++){

max = 0;
for (i=1; i<=j; i++){

x= p[i]+r[j-i]
if(x>max): max=x 

}
r[j] = max

}
return r[n] }

Don’t wait until until a subproblem is encountered. Solve smallest 
subproblems first and combine solutions of small subproblems to 
solve larger ones.



Bottom-up Dynamic Programming

Modify the code so it outputs the cuts rather than just the 
max profit.

R(n, p[1..n]){
r[0] = 0 
for (j=1; j<=n; j++){

max = 0;
for (i=1; i<=j; i++){

x= p[i]+r[j-i]
if(x>max): max=x 

}
r[j] = max

}
return r[n] }

Don’t wait until until a subproblem is encountered. Solve smallest 
subproblems first and combine solutions of small subproblems to 
solve larger ones.



Dynamic Programming Practice

Step1: Let S[k] represent the maximal subsequence that 
ends in position k.  Write a recursive definition for S[k+1]

Problem:  Given an array A[1..n] of real numbers, find 
the numbers j and k so that the sum A[j..k] is maximal



Dynamic Programming Practice

Step2: Write bottom-up code to compute S[k] and use 
another array T[k] to store the starting index

Problem:  Given an array A[1..n] of real numbers, find 
the numbers j and k so that the sum A[j..k] is maximal
S[0] = 0
S[k+1] = max{S[k] + A[k+1], A[k+1]}



Dynamic Programming Practice

Step1: Let D[i,j,m] represent the shortest path cost from 
vertex i to vertex j with at most m edges  
Let w[i,j] be the weight of edge from vertex i to vertex j.
Write a recursive definition for D[i,j,m+1]

Problem:  Given a graph with vertices labeled 1 … n, 
find the shortest path between all possible pairs of 
vertices.



Dynamic Programming Practice

Problem:  Given a graph with vertices labeled 1 … n, find the 
shortest path between all possible pairs of vertices.

D[i,j,0] = 0 if i=j and infinity otherwise
D[i,j,m+1] = min{D[i,j,m], min 0<k<=n {D[i,k,m] + w[k,j]}} 

Step2: Write bottom up code to compute D[i,j,n] for all 
pairs of i and j
What is the order of growth?



Dynamic Programming Practice

Step1: Let D[i,j,m] represent the shortest path cost from 
vertex i to vertex j which only uses paths through 
vertices 1 through m.
Let w[i,j] be the weight of edge from vertex i to vertex j.
Write a recursive definition for D[i,j,m+1]

Problem:  Given a graph with vertices labeled 1 … n, 
find the shortest path between all possible pairs of 
vertices.



Dynamic Programming Practice

Problem:  Given a graph with vertices labeled 1 … n, find the 
shortest path between all possible pairs of vertices.

D[i,j,0] = w[i,j]
D[i,j,m+1] = min{D[i,j,m], D[i,m+1,m] + D[m+1,j,m]} 

Step2: Write bottom up code to compute D[i,j,n] for all 
pairs of i and j
What is the order of growth?


