Dynamic Programming

We want to find the choices that maximize or minimize some
quantity:.

Rod Cutting Example

We are given a rod of length n and a table of prices p; for1=1, ..., n;
p; 1s the price of a rod of length 1.

Goal 1s to determine the maximum revenue r,, obtainable by cutting up
the rod and selling the pieces

Try to solve this for n=5 and p:1=1,p>=5,p:=8,p+=9,ps=10



Dynamic Programming

We want to find the choices that maximize or minimize some
quantity:.

Rod Cutting Example

We are given a rod of length n and a table of prices p; for1=1, ..., n;
p; 1s the price of a rod of length 1.

Goal 1s to determine the maximum revenue r,, obtainable by cutting up
the rod and selling the pieces

Notice that if the optimal solution has a cut of length 1,
and we took away that length 1, what remains must be an
optimal solution for a rod of length n" = n-1. Why?



Dynamic Programming

We want to find the choices that maximize or minimize some
quantity:.

Rod Cutting Example:

We are given a rod of length n and a table of prices p; fori=1, ..., n;
Goal 1s to determine the maximum revenue r,, obtainable by cutting up
the rod and selling the pieces

We can recursively define a solution by figuring out where to make the
first cut to maximize our possibilities with what’s leftover.

We want the maximum of
p; TR(n—1),p, tR(n—2),p; +R(n—3),...,p,-; TR(1),p,

Write a recursive algorithm R(n, p[1..n]) which does this



Dynamic Programming

We want to find the choices that maximize or minimize some
quantity:.
R(n, p[1..n]){
if (n==1): return p[1]
else{ max =0;
fori=1 ton{
x= p[i]+R(n-1)
1f(x>max): max=x

)

return x

)

If we called R(4), how many times each would R(1), R(2),
and R(3) be called?



Bottom-up Dynamic Programming

Don’t wait until until a subproblem 1s encountered. Solve smallest
subproblems first and combine solutions of small subproblems to
solve larger ones. Ren, p[1..n])
0] =0
for §=1; j<=n; j+H)1
max = 0;
for (1=1; 1<=9; 1++){

x=p[i]+r[j-1]
1f(x>max): max=x

;

1[j] = max

)

return r[n] }

[teratively fill in r array by calculating r[1],r[2],r[3] . . .for
n=5 and P =] P2 =5,p3=8,p4=9,p5=10



Bottom-up Dynamic Programming

Don’t wait until until a subproblem 1s encountered. Solve smallest
subproblems first and combine solutions of small subproblems to
solve larger ones. R(n, p[1.n])¢
0] =0
for (j=1; j<=n; j++){
max = 0;
for (1=1; 1<=9; 1++){

x=p[i]+r[j-1]
1f(x>max): max=x

;

1[j] = max

)

return r[n] }

What is the order of growth?



Bottom-up Dynamic Programming

Don’t wait until until a subproblem 1s encountered. Solve smallest
subproblems first and combine solutions of small subproblems to
solve larger ones. Ren, p[1..n])
0] =0
for §=1; j<=n; j+H)1
max = 0;
for (1=1; 1<=9; 1++){

x=p[i]+r[j-1]
1f(x>max): max=x

;

1[j] = max

)

return r[n] }

Modity the code so i1t outputs the cuts rather than just the
max profit.



Dynamic Programming Practice

Problem: Given an array A[l..n] of real numbers, find
the numbers j and k so that the sum A[j..k] 1s maximal

Stepl: Let S[k] represent the maximal subsequence that
ends 1n position k. Write a recursive definition for S[k+1]



Dynamic Programming Practice

Problem: Given an array A[l..n] of real numbers, find
the numbers j and k so that the sum A[j..k] 1s maximal
S[0] =0

S[k+1] = max{S[k] + A[k+1], A[k+1]}

Step2: Write bottom-up code to compute S[k] and use
another array T[k] to store the starting index



Dynamic Programming Practice

Problem: Given a graph with vertices labeled 1 ... n,
find the shortest path between all possible pairs of
vertices.

Stepl: Let D[1,),m] represent the shortest path cost from

vertex 1 to vertex ] with at most m edges
Let w[1,j] be the weight of edge from vertex 1 to vertex j.

Write a recursive definition for D[1,j),m+1]



Dynamic Programming Practice

Problem: Given a graph with vertices labeled 1 ... n, find the
shortest path between all possible pairs of vertices.

D[1,1,0] = 0 1f 1=) and infinity otherwise
D[1,j,m+1] = min{D[1j,m], min 0<k<=n {D[1,k,m] + wlk]} }

Step2: Write bottom up code to compute D[1,],n] for all
pairs of 1 and j
What 1s the order of growth?



Dynamic Programming Practice

Problem: Given a graph with vertices labeled 1 ... n,
find the shortest path between all possible pairs of
vertices.

Stepl: Let D[1,),m] represent the shortest path cost from
vertex 1 to vertex j which only uses paths through
vertices 1 through m.

Let w[1,]] be the weight of edge from vertex 1 to vertex j.
Write a recursive definition for D[1,j,m=+1]



Dynamic Programming Practice

Problem: Given a graph with vertices labeled 1 ... n, find the
shortest path between all possible pairs of vertices.

D[i,j,0] = w[i,j]
D[ij,m+1] = min {D[ij,m], D[i,m+1,m] + D[m+1,j,m]}

Step2: Write bottom up code to compute D[1,],n] for all
pairs of 1 and j
What 1s the order of growth?



