
Dynamic Programming

Try to solve this for n=5 and p1=1,p2=5,p3=8,p4=9,p5=10

Rod Cutting Example
We are given a rod of length n and a table of prices pi for i = 1, . . . , n;
pi is the price of a rod of length i.
Goal is to determine the maximum revenue rn, obtainable by cutting up
the rod and selling the pieces

We want to find the choices that maximize or minimize some
quantity.

Dynamic Programming

Notice that if the optimal solution has a cut of length i,
and we took away that length i, what remains must be an
optimal solution for a rod of length n′ = n-i. Why?

We want to find the choices that maximize or minimize some
quantity.

Rod Cutting Example
We are given a rod of length n and a table of prices pi for i = 1, . . . , n;
pi is the price of a rod of length i.
Goal is to determine the maximum revenue rn, obtainable by cutting up
the rod and selling the pieces

Dynamic Programming

Write a recursive algorithm R(n, p[1..n]) which does this

Rod Cutting Example:
We are given a rod of length n and a table of prices pi for i = 1, . . . , n;
Goal is to determine the maximum revenue rn, obtainable by cutting up
the rod and selling the pieces

We can recursively define a solution by figuring out where to make the
first cut to maximize our possibilities with what’s leftover.
We want the maximum of
p1 +R(n−1),p2 +R(n−2),p3 +R(n−3),...,pn−1 +R(1),pn

We want to find the choices that maximize or minimize some
quantity.

Dynamic Programming

If we called R(4), how many times each would R(1), R(2),
and R(3) be called?

R(n, p[1..n]){
if (n==1): return p[1]
else{ max = 0;

for i = 1 to n{
x= p[i]+R(n-i)

if(x>max): max=x
}
return x

}

We want to find the choices that maximize or minimize some
quantity.

Bottom-up Dynamic Programming

Iteratively fill in r array by calculating r[1],r[2],r[3] . . .for
n=5 and p1=1,p2=5,p3=8,p4=9,p5=10

R(n, p[1..n]){
r[0] = 0
for (j=1; j<=n; j++){

max = 0;
for (i=1; i<=j; i++){

x= p[i]+r[j-i]
if(x>max): max=x

}
r[j] = max

}
return r[n] }

Don’t wait until until a subproblem is encountered. Solve smallest
subproblems first and combine solutions of small subproblems to
solve larger ones.

Bottom-up Dynamic Programming

What is the order of growth?

R(n, p[1..n]){
r[0] = 0
for (j=1; j<=n; j++){

max = 0;
for (i=1; i<=j; i++){

x= p[i]+r[j-i]
if(x>max): max=x

}
r[j] = max

}
return r[n] }

Don’t wait until until a subproblem is encountered. Solve smallest
subproblems first and combine solutions of small subproblems to
solve larger ones.

Bottom-up Dynamic Programming

Modify the code so it outputs the cuts rather than just the
max profit.

R(n, p[1..n]){
r[0] = 0
for (j=1; j<=n; j++){

max = 0;
for (i=1; i<=j; i++){

x= p[i]+r[j-i]
if(x>max): max=x

}
r[j] = max

}
return r[n] }

Don’t wait until until a subproblem is encountered. Solve smallest
subproblems first and combine solutions of small subproblems to
solve larger ones.

Dynamic Programming Practice

Step1: Let S[k] represent the maximal subsequence that
ends in position k. Write a recursive definition for S[k+1]

Problem: Given an array A[1..n] of real numbers, find
the numbers j and k so that the sum A[j..k] is maximal

Dynamic Programming Practice

Step2: Write bottom-up code to compute S[k] and use
another array T[k] to store the starting index

Problem: Given an array A[1..n] of real numbers, find
the numbers j and k so that the sum A[j..k] is maximal
S[0] = 0
S[k+1] = max{S[k] + A[k+1], A[k+1]}

Dynamic Programming Practice

Step1: Let D[i,j,m] represent the shortest path cost from
vertex i to vertex j with at most m edges
Let w[i,j] be the weight of edge from vertex i to vertex j.
Write a recursive definition for D[i,j,m+1]

Problem: Given a graph with vertices labeled 1 … n,
find the shortest path between all possible pairs of
vertices.

Dynamic Programming Practice

Problem: Given a graph with vertices labeled 1 … n, find the
shortest path between all possible pairs of vertices.

D[i,j,0] = 0 if i=j and infinity otherwise
D[i,j,m+1] = min{D[i,j,m], min 0<k<=n {D[i,k,m] + w[k,j]}}

Step2: Write bottom up code to compute D[i,j,n] for all
pairs of i and j
What is the order of growth?

Dynamic Programming Practice

Step1: Let D[i,j,m] represent the shortest path cost from
vertex i to vertex j which only uses paths through
vertices 1 through m.
Let w[i,j] be the weight of edge from vertex i to vertex j.
Write a recursive definition for D[i,j,m+1]

Problem: Given a graph with vertices labeled 1 … n,
find the shortest path between all possible pairs of
vertices.

Dynamic Programming Practice

Problem: Given a graph with vertices labeled 1 … n, find the
shortest path between all possible pairs of vertices.

D[i,j,0] = w[i,j]
D[i,j,m+1] = min{D[i,j,m], D[i,m+1,m] + D[m+1,j,m]}

Step2: Write bottom up code to compute D[i,j,n] for all
pairs of i and j
What is the order of growth?

