
Implementation of Sudoku Solver using Backtracking

For this project you will develop a Sudoku solver, a program that receives a
Sudoku instance and solves it. Your program will use a backtracking approach as
follows. At any given point, the solver has a partial assignment of values to some
of the cells in the input grid. Initially, the partial assignment only has values for the
preset cells that are specified in the input instance.

The solver repeatedly attempts to extend the current partial assignment, by
selecting one of the unassigned cells and giving it a value that does not violate the
Sudoku rules. If no good value exists for the selected cell, then this cell is
unassigned and the solver backtracks to change the value assigned earlier to a
previously chosen cell. If the assignment is extended so that all the cells are
assigned a value consistent with the Sudoku rules, the input instance is solved.

Here is some recursive pseudocode for the crucial method.

// Returns true if the assignment has been extended to a complete
// assignment; if this is not possible, returns false.  
// The incoming assignment may be a partial assignment.  

boolean solve (Assignment assignment) {
 if (isComplete(assignment)) // base case: solution found return true
 else {  
 // cell is chosen in some systematic way
 cell = chooseNextCell(assignment);
 // compute all the reasonable values that cell might take
 values = set values that do not appear is cell’s row or column or box
 while (values is not empty) {  
 // chosen in some systematic way
 chosenValue = the next value in values
 // cell gets a reasonable value
 setValue (cell, assignment, chosenValue)

 // try to assign values to any cells that remain unassigned
 if (solve(assignment))
 return true
 else {

 // setting cell to the chosen value did not work
 unset (cell, assignment)  
 remove chosenValue from values
}  } // while

// We tried each reasonable value for cell, and none worked
// (if one had worked, we would have returned already)  
// so head back  
return false;

 } //else
} // solve

Your programming project
You will develop a solver for the Sudoku problem using the backtracking
approach. Your solver receives a Sudoku instance as input and computes a (any
one) solution for it. If no solution exists, your program will report this.

The input will be read in as the previous project so you will use your parser and
board that you already have written.

After your own testing convinces you that your solver is correct, run and time your
solver on all of the required input set. Preserve the runtimes since you will need
them again to compare with future projects.

Submission instructions

By the deadline, submit your working solver, evidence of its correctness on the
required input set, and a meaningful table with its runtimes.

This material is based upon work supported by the National Science Foundation under Grant No.
1140753.

	

