
Lab 3 — Observer Pattern

CS 205

Lab objectives:

• Implement the observer pattern within a Model/View/Controller architecture.

• Make use of the Observable class and the Observer interface.

You will implement the classical example of the observer pattern — a data set and two views, one text view
and one graphics view.

The data model consists of an array of integers. For simplicity, you may assume that the integers are
in a range that is suitable for plotting in the graphical view. The text view is a collection of JTextField
components. Editing a text field updates the model and hence the other view. The graphical view is a
simple bar chart. Clicking anywhere next to a bar moves the bar to the mouse position.

You must use the Observer interface and the Observable class as follows:

public class DataModel extends Observable

{

. . .

}

public class TextView extends Box implements Observer

{

public TextView(DataModel aModel)

{

super(BoxLayout.Y_AXIS);

. . .

} // TextView constructor

. . .

} // TextView class

1



public class GraphView extends JPanel implements Observer, MouseListener

{

public void paintComponent(Graphics g)

{

super.setBackground(Color.white);

super.paintComponent(g);

Graphics2D g2 = (Graphics2D)g;

. . .

}

. . .

}

Hints:

1. Your main method will create an array of integers which can be either read-in or hard-coded. You will
create DataModel, TextView, and GraphView objects and register listeners and observers. Make two
JFrame objects. In the first frame, set its content pane to the text view and pack it. In the second
frame, set the content pane to the graph view. Use setBounds to move and set the graph frame to an
appropriate size.

2. The Box class takes care of packing the JTextField components vertically. Just use the add method.

3. Each JTextField object should have an actionListener which will take the appropriate action when
the text value is changed.

4. The graph view should have a MouseListener which takes the appropriate action when the mouse is
clicked. You can have empty methods for the other mouse actions.

5. The DataModel class will need to use the setChanged and notifyObservers methods inherited from
the Observable class when a data value is changed.

6. Give each bar in the graph view a fixed height. I used

private static final int HEIGHT = 20

Then when a user clicks on the point (x,y), the graphical view can tell the model to set the data point
with index y/HEIGHT to x. You can find out which point was clicked from the MouseEvent.

Add Javadoc comments to document the code that you write for the lab. Export your lab into a ZIP
archive and submit it in Canvas.

2


