Question Set 7

CS 320

Chapter 8

1. Consider the following figure:

The vectors $\vec{v_1}$ and $\vec{v_2}$ extend from the center of the archall to points on the surface of the sphere represented by the archall. Let the points be $\tilde{p_1}$ and $\tilde{p_2}$ respectively. Let the center of the archall be \tilde{c} . Starting from these three points, write pseudo-code to construct:

- (a) \vec{k} . Also, what does \vec{k} represent?
- (b) The angle ϕ .
- (c) The quaternion representing the rotation from $\vec{v_1}$ to $\vec{v_2}$.
- 2. Referring to the previous figure, the archall interface uses the quaternion $[\cos \phi, \sin \phi \ \hat{\mathbf{k}}]^t$ to represent the rotation from $\vec{v_1}$ to $\vec{v_2}$. This causes the rotated object to rotate twice as far as expected. Why?
- 3. For the arcball interface, given two raw mouse click points $[x_1, y_1]^t$ and $[x_2, y_2]^t$, write pseudocode to convert them to the vectors $\vec{v_1}$ and $\vec{v_2}$. Assume that you have the arcball's RigTform. You will need to use the getScreenSpaceCoord() function described in the *Implementing an Arcball Interface* reading.
- 4. Given the vectors $\vec{v_1}$ and $\vec{v_2}$, write pseudo-code to construct the RigTform corresponding to the rotation between them.