
Project 8: Virtual Machine Translator II

CS 220

Start: Nov. 18; Due: Dec. 8 at 11:55 pm

Background

We continue building the VM Translator — a program that translates a program written in the
VM language into a program written in the Hack machine language. This is a respectable chunk
of engineering, so we are doing it in two stages. Welcome to Stage II.

Objective

Extend the basic VM translator built in Project 7 into a full-scale VM translator. In particular, in
Project 7 we focused on handling the stack arithmetic and memory access commands of the VM
language. We now turn to handle the language’s branching and function calling commands.

Contract

Write a full-scale VM-to-Hack translator, extending the translator developed in Project 7, and con-
forming to the VM Specification, Part II (Section 8.2) and to the Standard VM-on-Hack Mapping,
Part II (Section 8.3.1). Use your VM translator to translate he VM programs supplied below,
yielding corresponding programs written in the Hack assembly language. When executed on the
supplied CPU Emulator, the translated code generated by your VM translator should deliver the
results mandated by the test scripts and compare files supplied below.

Resources

The relevant reading for this project is Chapter 8. You will need two tools: the programming
language with which you implement your VM translator, and the supplied CPU Emulator. This
emulator will allow you to execute, and test, the machine code generated by your VM translator.
Another tool that comes handy in this project is the supplied visual VM Emulator. The emulator
allows experimenting with a working VM implementation and with the given VM programs before
you set out to translate them. For more information about this tool, refer to the supplied VM
Emulator Tutorial.

Testing

We recommend completing the implementation of the VM translator in two stages. First, implement
and test the translation of the VM language’s branching commands, then implement and test
the translation of the function call and return commands. This will allow you to unit-test your
implementation incrementally, using the test programs supplied below.

Testing how the VM Translator handles branching commands:

1

Testing how the VM Translator handles function call and return commands:

Notes: For NestedCall, FibonacciElement, and StaticsTest, your program will be trans-
lating the entire directory. For the remaining tests, you will be translating a single file. For
FibonacciElement, and StaticsTest, your program should insert the bootstrap code at the be-
ginning of the asm file. None of the remaining tests need the bootstrap code.

Handling programs consisting of more than one file: VM programs are rarely written
by humans; they are normally generated by compilers. For example, Java compilers translate Java
class files into intermediate VM code known as Bytecode. As we will see in the next projects, our

2

transparent
transparent

Jack compilation model is very similar. A Jack program consists of one or more compilation units,
known as classes. Each class is stored in a separate .jack file, all residing in the same directory
— let’s call it MyProg. Following compilation, the Jack compiler generates a set of corresponding
.vm files, and stores them in the same MyProg directory. At this point the VM Translator enters
the picture. If we wish to execute the MyProg code on the Hack platform, we apply the VM
Translator to the entire MyProg directory (rather than to the individual .vm files). The result will
be a single, monolithic MyProg.asm file containing the logic of the entire program. Therefore, your
VM Translator should be capable of translating both an individual .vm file as well as a directory
containing one or more .vm files.

Proposed Implementation

Chapters 7 and 8 include a proposed, language-independent VM Translator API, which can serve
as your implementation’s blueprint.

For each one of the six supplied test programs, follow these steps:

1. To get acquainted with the intended behavior of the supplied test program Xxx.vm, run it on
the supplied VM Emulator using the supplied XxxVME.tst test script (if the program consists
of one ore more files residing in a directory, load the entire directory into the VM Emulator
and proceed to execute the code.)

2. Use your VM translator to translate the supplied Xxx.vm file, or directory, as needed. The
result should be a new text file containing Hack assembly code. The name of this file should
be Xxx.asm.

3. Inspect the translated Xxx.asm program. If there are visible syntax (or any other) errors,
debug and fix your VM translator.

4. To check if the translated code performs properly, use the supplied Xxx.tst and Xxx.cmp

files to run your translated Xxx.asm program on the supplied CPU Emulator. If there are
run-time errors, keep working on your VM translator.

API: Chapter 8 includes a proposed, language-independent VM Translator API. This API can
be the blueprint of your VM Translator implementation.

Implementation order: The supplied test programs were carefully planned to test the specific
features of each stage in your VM implementation. Therefore, it’s important to implement your
VM translator in the proposed order, and to test it using the supplied test programs at each stage.
Implementing a later stage before an early one may cause the test programs to fail.

Initialization: In order for any translated VM program to start running, it must include a
preamble startup code (boot code) that forces the VM implementation to start executing it on the
host platform. In addition, in order for any VM code to operate properly, the VM implementation
must store the base addresses of the virtual memory segments in the correct locations in the
host RAM. The first four test programs in this project assume that the startup code was not yet
implemented, and include test scripts that effect the necessary initialization “manually.” The last
two programs assume that the startup code is already part of the VM implementation.

Tools

The VM Emulator: This Java program, included in the Nand2Tetris Software Suite, executes VM
programs in a direct and visual way, without having to first translate them into machine language.
This allows you to experiment with the VM environment before setting out to build your own VM
Translator. For example, you can use the supplied VM Emulator to see — literally speaking — how
push and pop commands effect the stack. And, you can use it to execute any one of the supplied
.vm test programs. Here is a typical screen shot of the VM Emulator in action:

3

Confused? Go through the supplied VM Emulator Tutorial .

Submission and Assessment

If you can’t finish the project on time, submit what you’ve managed to do, and relax. All the
projects in this course are highly modular, with incremental test files. Each hardware project
consists of many chip modules (*.hdl programs), and each software project consists of many
software modules (classes and methods). It is best to treat each project as a modular problem set,
and try to work out as many problems as you can. You will get partial credit for partial work.

What if your chip or program is not working? It’s not the end of the world. Hand in whatever
you did, and explain what works and what doesn’t in a README file. If you want, you can also
supply test files that you developed, to demonstrate working and non-working parts of your project.
Instead of trying to hide the problem, be explicit and clear about it. You will get partial credit for
your work.

See the next page for the assessment rubric. Submit the following as a single ZIP archive in
GoucherLearn:

1. A README file containing the names of all group members. This file may also contain other
information, as described above.

2. All files necessary to build your Virtual Machine Translator program from source. If you
use the starter Eclipse Java project, export your project into a ZIP archive and submit the
archive.

3. Nothing else.

You will lose points for not following these submission instructions.

4

transparent

Project 8: Virtual Machine II: Program Control

Student name(s): __

Grading method: As usual with programming assignments, we look for elegance, clarity,

reasonable documentation, and neatness.

VM I Working? Comments

Working?

/ 50 Does the program generate

assembly output that will work

on all test inputs?

Well built?

/ 40

12 points for documentation.

But, don't over-document! For

every method you write,

document what it does, what

parameters it takes, and what

it returns. Use your judgment

to add more documentation

when needed.

8 points for a VM translator

that produces efficient

assembly code. Generally

speaking, the fewer the

number of generated assembly

instructions, the better.

20 points for a good and clean

implementation that we can

easily read and understand.

README

/ 10 Names of group members; if project doesn’t work, comments on things that don’t

work and how you've tried to fix them.

Total

/ 100

Total grade: ______________________

