
Project 5: Computer Architecture

CS 220

Start: Oct. 7; Due: Oct. 15 at 11:55 pm

Background

In previous projects we’ve built the computer’s basic processing and storage devices (ALU and
RAM, respectively). In this project we will put everything together, yielding the complete Hack
Hardware Platform. The result will be a general-purpose computer that can run any program that
you fancy.

Objective

Complete the construction of the Hack CPU and computer platform, leading up to the top-most
Computer chip.

Chips

Contract

The computer platform that you build should be capable of executing programs written in the Hack
machine language, specified in Chapter 4. Demonstrate this capability by having your Computer
chip run the three test programs given below.

Testing

Testing the Memory and CPU chips: It’s important to unit-test these chips before proceeding
to build the overall Computer chip. Use the the test scripts and compare files listed above.

Testing the Computer chip: A natural way to test the overall Computer chip implementation
is to have it execute some sample programs written in the Hack machine language. In order to
perform such a test, one can write a test script that (i) loads the Computer.hdl chip description
into the supplied Hardware Simulator, (ii) loads a machine-level program from an external .hack
file into the ROM chip-part of the loaded Computer.hdl chip, and then (iii) runs the clock enough
cycles to execute the loaded instructions. We supply all the files necessary to run three such tests,
as follows:

1

transparent

Before testing your Computer chip on any one of the above programs, read the relevant .tst

file and be sure to understand the instructions given to the simulator. Appendix B of the book
may be a useful reference here.

Resources

The relevant reading for this project are Chapter 5, Appendix A, and Appendix B (as a reference).
Specifically, all the chips described in Chapter 5 should be implemented in the Hardware Description
Language (HDL) specified in Appendix A.

The resources that you need for this project are the supplied Hardware Simulator and the files
listed above. The project files are available in a ZIP archive file available on the course web site.

Implementation Tips

Complete the computer’s construction in the following order:

1. Memory: This chip includes three chip-parts: RAM16K, Screen, and Keyboard. The Screen
and the Keyboard are available as built-in chips, and thus there is no need to implement them.
Although the RAM16K chip was built in Project 3, we recommend using its built-in version,
as it provides a debugging-friendly GUI.

2. CPU: This chip can be constructed according to the proposed CPU implementation given
in Figure 5.9 of Chapter 5, using the ALU and register chips built in Projects 2 and 3,
respectively. We recommend though using built-in chip-parts instead, in particular ARegister
and DRegister. The built-in versions of these two chips have exactly the same interface and
functionality as those of the Register chip specified in Chapter 3; however, they feature GUI
side-effects that come handy for testing purposes.

In principle, your CPU implementation may include internal chips of your own specification,
i.e. chips not mentioned in Figure 5.9 of Chapter 5. However, this is not recommended,
and will most likely yield a less efficient CPU design. If you choose to create new chips not
mentioned in the book, be sure to document and unit-test them carefully before you plug
them into the architecture.

3. Instruction memory: Use the built-in ROM32K chip.

4. Computer: The top-most Computer chip can be constructed according to the proposed
implementation shown in Figure 5.10 of Chapter 5.

2

transparent

Tools

All the chips mentioned in this project, including the topmost Computer chip, can be implemented
and tested using the supplied Hardware Simulator. Here is a screen shot of testing the Rect.hack

program on a Computer chip implementation.

The Rect program illustrated above draws a rectangle of width 16 pixels and length RAM[0]

at the top-left of the screen. Now here is an interesting observation: normally, when you run a
program on some computer, and you don’t get the desired result, you conclude that the program is
buggy. In our case though, the supplied Rect program is bug-free. Thus, if running this program
yields unexpected results, it means that the computer platform on which it runs (Computer.hdl
and/or some of its lower-level chip parts) is buggy. If that is the case, you have to debug your
chips.

Submission and Assessment

If you can’t finish the project on time, submit what you’ve managed to do, and relax. All the
projects in this course are highly modular, with incremental test files. Each hardware project
consists of many chip modules (*.hdl programs), and each software project consists of many
software modules (classes and methods). It is best to treat each project as a modular problem set,
and try to work out as many problems as you can. You will get partial credit for partial work.

What if your chip or program is not working? It’s not the end of the world. Hand in whatever
you did, and explain what works and what doesn’t in a README file. If you want, you can also
supply test files that you developed, to demonstrate working and non-working parts of your project.
Instead of trying to hide the problem, be explicit and clear about it. You will get partial credit for
your work.

3

transparent

See the next page for the assessment rubric. Submit the following as a single ZIP archive in
GoucherLearn:

1. A README file containing the names of all group members. This file may also contain other
information, as described above.

2. All your HDL files.

3. Nothing else.

You will lose points for not following these submission instructions.

4

Project 5: Computer Architecture

Student name(s): ___ ___

Grading method: The implementation of some chips was described in the book, and some chips

are simpler than others. The different weights assigned to the chips below reflect this variance. If

the chip passes all the tests specified in the supplied test script, it receives two thirds of its

allotted points. The remaining third reflects our evaluation of the way the chip is built.

Generally speaking, we prefer implementations that use as few chip parts as possible, even if it

implies a less efficient chip design.

Chip Working? Well built? Comments

Memory / 17 / 8

CPU / 35 / 18

Computer / 15 / 7

Total / 67 / 33

Total grade: ______________________

