
Project 1: Elementary Logic Gates

CS 220

Start: Sept. 2; Due: Sept. 10 at 11:59 pm

Background

A typical computer architecture is based on a set of elementary logic gates like And, Or, Mux, etc.,
as well as their bit-wise versions And16, Or16, Mux16, etc. (assuming a 16-bit machine). This
project engages you in the construction of a typical set of basic logic gates. These gates form the
elementary building blocks from which more complex chips will be later constructed.

Objective

Build all the logic gates described in Chapter 1 (see list below), yielding a basic chip-set. The only
building blocks that you can use in this project are primitive Nand gates and the composite gates
that you will gradually build on top of them.

Contract

When loaded into the supplied Hardware Simulator, your chip design (modified .hdl program),
tested on the supplied .tst script, should produce the outputs listed in the supplied .cmp file.
If that is not the case, the simulator will let you know.

Resources

The relevant reading for this project is Chapter 1 and Appendix A, sections 1 through 6. Specifically,
all the chips described in Chapter 1 should be implemented in the Hardware Description Language
(HDL) specified in Appendix A. Another resource that you will find handy in this and in all
subsequent hardware projects is this HDL Survival Guide, written by Mark Armbrust.

For each chip, we supply a skeletal .hdl file with a place holder for a missing implementation
part. In addition, for each chip we supply a .tst script that instructs the hardware simulator how
to test it, and a .cmp (“compare file”) containing the correct output that this test should generate.
Your job is to complete and test the supplied skeletal .hdl files.

On a Windows system, you’ll find the necessary project files in C:\nand2tetris\projects\01.
On phoenix, you’ll find these files in /usr/local/Nand2Tetris/projects/01. On a Mac, the
files will be in /usr/local/nand2tetris/projects/01. To get acquainted with the Hardware
Simulator, go through parts I through III of the supplied Hardware Simulator Tutorial .

1

Chips

Tips

Built-in chips: The Nand gate is considered primitive and thus there is no need to implement it:
whenever a Nand chip-part is encountered in your HDL code, the simulator automatically invokes
the built-in tools/builtInChips/Nand.hdl implementation. We recommend implementing the
other gates in this project in the order in which they appear in Chapter 1. However, note that
the simulator’s environment includes a library with built-in versions of all these chips. Therefore,
you can use any one of these chips before implementing it: the simulator will automatically invoke
their built-in versions.

For example, consider the supplied skeletal Mux.hdl program. Suppose that for one reason or
another you did not complete the implementation of Mux, but you still want to use Mux chips as
internal parts in other chip designs. You can easily do so, thanks to the following convention. If
the simulator fails to find a Mux.hdl file in the current directory, it automatically invokes a built-
in Mux implementation, which is part of the supplied simulator’s environment. This built-in Mux

implementation has the same interface and functionality as those of the Mux chip described in the
book. Thus, if you want the simulator to ignore one or more of your chip implementations, simply

2

transparent

rename the corresponding chipname.hdl file, or remove it from the directory. When you are ready
to develop this chip in HDL, put the file chipname.hdl back in the directory, and proceed to edit
it with your HDL code.

To simplify the chip coding process, it can be quite useful to define and build gates not listed
above. For example, a Mux4 chip can come in handy for building the Mux4Way16 chip. It can also
come in handy for building a Mux8 chip which in turn is handy for building the Mux8Way16 chip.

Tools

All the chips mentioned in Projects 1–5 can be implemented and tested using the supplied Hardware

Simulator . Here is a screen shot of testing a Xor.hdl chip implementation on the Hardware

Simulator :

Submission and Assessment

If you can’t finish the project on time, submit what you’ve managed to do, and relax. All the
projects in this course are highly modular, with incremental test files. Each hardware project
consists of many chip modules (*.hdl programs), and each software project consists of many
software modules (classes and methods). It is best to treat each project as a modular problem set,
and try to work out as many problems as you can. You will get partial credit for partial work.

What if your chip or program is not working? It’s not the end of the world. Hand in whatever
you did, and explain what works and what doesn’t in a README file. If you want, you can also

3

transparent

supply test files that you developed, to demonstrate working and non-working parts of your project.
Instead of trying to hide the problem, be explicit and clear about it. You will get partial credit for
your work.

See the next page for the assessment rubric. Submit the following in GoucherLearn:

1. A README file containing the names of all group members. This file may also contain other
information, as described above.

2. All your HDL files.

3. Nothing else.

You will lose points for not following these submission instructions.

4

Project 1: Logic Gates

Student name(s): ___ ___

Grading method: The implementation of some chips was described in the book, and some chips

are simpler than others. The different weights assigned to the chips below reflect this variance. If

the chip passes all the tests specified in the supplied test script, it receives two thirds of its

allotted points. The remaining third reflects our evaluation of the way the chip is built.

Generally speaking, we prefer implementations that use as few chip parts as possible, even if it

implies a less efficient chip design.

Chip Working? Well built? Comments

Not / 3 / 1

And / 3 / 1

Or / 4 / 2

Xor / 4 / 2

Mux / 5 / 3

DMux / 5 / 3

Not16 / 3 / 2

And16 / 3 / 2

Or16 / 3 / 2

Mux16 / 3 / 2

Or8Way / 5 / 3

Mux4Way16 / 6 / 3

Mux8Way16 / 6 / 3

DMux4Way / 6 / 3

DMux8Way / 6 / 3

Total / 65 / 35

Total grade: ______________________

