
Unix/Linux tutorial http://hven.swarthmore.edu/~burns/unix.html

1 of 11 09/17/2006 04:16 PM

UNIX/Linux Tutorial

CSC a57

This document is meant to be a crash-course in using the UNIX operating system, with Linux being an

example. It is not meant to be an in-depth reference. Beginners are taken through the system concepts and

commands. If you're an experienced user, this is probably not for you, though you may find some new tricks.

For further information on the Linux operating system, I highly recommend the following:

Running Linux by Matt Welsh and Lar Kaufman. This book takes you through the setup, management

and use of Linux.

Linux in a Nutshell by Jessica Perry Hekman. This is a good quick reference for commands and

environment settings.

Now for some conventions. The terminal type face will be used to indicate things you type in at the system

prompt, or for things the computer types to the screen, such as a directory listing. When it comes time to type

a command, things in < > represent buttons to press. For example <Ctrl-C> means pressing down the Control

button and the C button at the same time. Things between [] indicate information you must supply, such as

delete [filename] The bold type face will be used to indicate terms which are jargon, and are therefore used

in the literature (and the rest of this manuscript) without explanation. Now that that's out of the way, let's dive

in.

Multi-user vs. Single-user

The UNIX family of operating systems are multi-user environments. This is in contrast to single-user

systems, like DOS and Windows. When you run DOS or Windows on your PC, all files are readable and

writable (i.e., deletable) by the user. There is nothing (except a warning message) to stop you from executing

C:> FORMAT C:
and wiping out your hard disk. In the UNIX world, however, there are many users on the same system.

Consequently, each file or directory has an ownership attached to it. Your home directory, for instance, will

be owned by you, as well as any files you create. Each file and directory also has permissions associated with

it. For example, as a regular user, you can read and execute certain programs owned by the system, but you

cannot write over them. You won't be able to read files in someone else's mailbox, either (which only makes

sense). You can always change the permissions of any file you own. We will see this later on.

Now, if the system has multiple users, we have to have some way of telling it who we are. We also have to

make sure someone can't impersonate someone else and get access to their files. This is accomplished

through the login procedure.

Logging In

The system administrator will have given you a user name and initial password. Different systems have

different ways of presenting the login prompt: it could simply be text on the screen or a very posh graphical

interface. Nevertheless, you usually enter your user name, followed by your password. Usually, the characters

you type in for your password will not show up on the screen, for added security. If, for some reason, you

can't log in, consult the system administrator. Also keep in mind that passwords are case sensitive.

Unix/Linux tutorial http://hven.swarthmore.edu/~burns/unix.html

2 of 11 09/17/2006 04:16 PM

At this point, depending on how the system administrator has set things up, you may be presented with a

windows-like (usually X-windows) environment or a simple terminal. Either way, you should now have a

screen where you can type in commands. This is your shell. Your shell is your interface to the operating

system (in DOS, your shell was called COMMAND.COM). Since UNIX is a multi-tasking as well as multi-user

environment, you can have many shells running at the same time. To further complicate things, there are

several different shells you can use. The default shell on Linux is bash (stands for Bourne Again SHell).

Others include csh, tcsh, ksh and sh. They all serve the same purpose, but each has different features and

syntaxes. As far as this tutorial is concerned, they more or less work the same, however I will assume you are

using bash.

Important: When you are all done, remember to log out of the system. This is usually accomplished by

typing logout at the prompt. If you are using X-Windows, there will be a large button at the bottom of the

screen labeled 'Logout'. You will know you have logged out completely when you see the login prompt. If

you forget to log out, someone else could come along and mess with your files, or send email from your

account!

Executing commands

Now it's time to execute our first command. You logged in with an initial password, so the first thing to do is

change it. It's a good idea to change your password on a regular basis, for increased security. A password

should be something hard to guess and should consist of both uppercase and lowercase letters and numbers.

To change your password, execute the passwd command. The system will then prompt you for the old

password and a new password.

Now that everything is nice and secure, let's have a look at what UNIX and bash have to offer us as an

environment. When you log in to the system, you are usually deposited in your home directory. As we said

above, this is a directory that you own and which you can write to. To find out where this directory is on the

system, try using the pwd command. This will output the directory you are currently sitting in. Here's an

example for my account on a computer called mandragona:

 mandragona ~ $ pwd
 /u/burns
 mandragona ~ $

Let's have a look close look at this. The first few items on the command line, mandragona ~ $ are supplied by

the system. This is my system prompt. It's the computer's way of telling me it's ready to receive commands.

Here, I've customized my prompt to indicate what machine I'm currently logged on (very useful when you

have many login sessions on many computers on the same screen!), as well as my current directory (the ~

indicates my home directory). The second line is what the computer spits out. The third line is again my

system prompt.

The command pwd and passwd are relatively simple commands in that we didn't supply any arguments. Most

commands in UNIX need arguments to function. Keeping track of what arguments a command requires takes

a very good memory, especially for seldom-used commands or features of a command. That's why UNIX has

an on-line summary of each command, called man pages. To access the man page for a particular command,

just execute: man [command]. For example:

 mandragona ~ $ man pwd

produces:

PWD(1L) PWD(1L)

Unix/Linux tutorial http://hven.swarthmore.edu/~burns/unix.html

3 of 11 09/17/2006 04:16 PM

NAME
pwd - print name of current/working directory

SYNOPSIS
pwd
pwd {--help,--version}

DESCRIPTION
This manual page documents the GNU version of pwd. pwd
prints the fully resolved name of the current directory.
That is, all components of the printed name will be actual
directory names -- none will be symbolic links.

Note that most Unix shells provide a built-in pwd command
with similar functionality so the unadorned, interactive
pwd command will usually execute the built-in version and
not this one.

OPTIONS
--help Print a usage message on standard output and exit
 successfully.

--version
 Print version information on standard output then
 exit successfully.

FSF GNU Shell Utilities 1

While very helpful, these man pages use a lot of jargon and at first you might feel they confuse more than

illuminate. However, the more you learn about UNIX, the more they will make sense. If you feel very

ambitious, try

 $ man bash

which gives a very lengthy and technical guide to the bash shell.

The Filesystem

Like DOS/Windows, UNIX can have several filesystems on one or more disks. In DOS/Windows, different

partitions are labeled as A: B: C: D: E:etc. They might be hard disks, floppy disks, CD-ROMs, etc. Under

each partition, there is a directory tree , consisting of many files and directories. Directories are specified

using the backslash (\). So, for example, a file on a CD-ROM can be accessed by specifying:

D:\SUBDIR1\SUBDIR2\FILE.EXT

Things in UNIX are a bit different. We still have directory trees under partitions. However, in UNIX,

everything is case-sensitive and file and directory names can have more than an 8-character name and

3-character extension. We are now free to have as many extensions as we like, each consisting of as many

characters as we like. Another difference is that subdirectories are separated by forward slashes (/). Finally,

different partitions look like subdirectories of the root partition. In our example above, we would specify a

file on the CD-ROM as:

/cdrom/subdir1/subdir2/file.ext

Here, the CD-ROM is mounted on the subdirectory /cdrom . We access it just as if it were a regular file on

our hard disk. The same would be true for other hard disks, floppy disks, NFS filesystems, etc. Use the mount

command to see what partition is mounted under what subdirectory.

We said above that each file and directory has an ownership and permissions attached to it. To see what they

Unix/Linux tutorial http://hven.swarthmore.edu/~burns/unix.html

4 of 11 09/17/2006 04:16 PM

are, you use the ls command. ls provides the same information as dir in DOS. However, to make ls show us

more than just the file names, we need to give it a -l switch. A switch is simply an argument which modifies

the behaviour of a command. Switches usually consist of a dash (-), followed by one or more characters. If

you execute the following statement:

 $ ls -l .bash_profile

you should get something like:

 -rw-r--r-- burns users 512 .bash_profile

The first field describes the permissions of the file. The second tells us that burns owns the file. The third

says that the group users has access to the file (more on groups in a bit). The fourth and fifth fields are the

size of the file in bytes and the name of the file. Note that using ls by itself will list all files in the directory

except those which begin with a period (.). These are hidden files. Use the -a switch to make ls list all files,

including hidden ones.

Let's take a look at the permissions. This field consists of 10 characters. The first is reserved for special file

attributes, such as "d" to indicate the file is a directory. The next three characters are the permissions

associated with the owner of the file. In the above example, rw- means the owner of the file can read, write,

but not execute the file. If we wanted the owner to be able to execute the file, we could use the chmod

command (more about this later). If we used this command, the permissions of the owner would then be rwx.

The next three characters in the permissions field work the same as for the first three, but they apply to users

who are in the group specified by the ls -l command. In the case above, this would be the group users. It is

possible for one person to be a member of many groups. To find out which group(s) you belong to, simply

invoke the groups command. Having groups as well as simple users can be very useful. Many users may be

working on the same bit of code, for example, so they all need read/write access to the source code while

making sure no one else can touch it.

The last three permission characters work the same as the owner and group ones, but these apply to every user

on the system. Consider the command ls. If only one person on the system could execute this command, it

would make things very difficult for other users. Also, we wouldn't want anyone to mistakenly delete the ls

command (in UNIX, there is generally no undelete!). Therefore we can expect that the executable file ls will

have permissions as follows:

 -rwxr-xr-x root bin 45984 /bin/ls

Here, only one user, root, can write (i.e., modify or delete) the file. Everyone else can read and execute it.

The special user root has ownership of most of the system files and is the account used by the system

administrator. With a properly maintained system, it is therefore impossible for a regular user to inadvertently

destroy important system files.

User Commands and Environment Variables

Now that we have seen what kind of strange land we've been deposited in, let's get to know the language.

Your shell is your interface between you and the system. It takes what you type in, tries to figure out what

you want to do and then sends messages to the system (or error messages to you, telling you how stupid you

are). As stated previously, commands consist of the command name, followed by arguments. The arguments

can either be information you provide or switches the command recognizes. Based on this information, the

command goes about doing its stuff. However, there is another way a command can get information on how

to behave, apart from the command line: environment variables.

Unix/Linux tutorial http://hven.swarthmore.edu/~burns/unix.html

5 of 11 09/17/2006 04:16 PM

Environment variables are just like variables in the sense of programs. In bash, you set an environment

variable using the following syntax:

$ [VARIABLE]=[value]
$ export [VARIABLE]

The first line sets the variable. The variable name can be anything you like (just be careful you're not

clobbering a previously defined one). The value can be any string. If it contains spaces, quote the whole

thing. If we left it at that, we could access this variable as $[VARIABLE] later on. For example:

$ X=.bash_profile ;# No spaces before or after the =
$ echo $X
.bash_profile
$ ls -l $X
 -rw-r--r-- burns users 512 .bash_profile

But we can only access this variable in our current shell. Think of our shell as a subroutine and the

environment variable as a local variable. If we run a program, that program will not be able to access our

"local" variable. To make it global, we use the export command. Now any program we run will be able to

access $X.

As an example of how environment variables and commands work together, consider the lpr command. This

sends a file to a printer. Since we are most likely set up on a network, there can be many printers to choose

from. We select the appropriate printer using a switch:

 $ lpr -P[printer name]

Note that the switch is a capital P and there is no space between the switch and the printer name. It might get

tedious to type out the printer name over and over again, especially if you usually only use one printer.

Another way to do it is to use the PRINTER environment variable. lpr checks this environment variable and

uses the printer name stored in it unless it is overridden by the -P switch. To see if you already have a PRINTER

variable set, use the echo command: echo $PRINTER . Another way to check environment variables is to

execute the env command. This will list all environment variables in your current shell.

If you want an environment variable to be set every time you log in automatically, you need only edit your

.bash_profile file and put the variable assignment statement somewhere in the file on a line by itself.

.bash_profile is like AUTOEXEC.BAT in DOS. All the lines in .bash_profile, except those beginning with a '#', are

executed at login time.

Now let's look at the most common user commands and what they do. The easiest way to do this is to give

you a table containing the name, function and possible DOS equivalents. It is up to you to look at the man

pages for the commands to see what more they can do for you.

Command Function DOS Equivalent

bash Run the Bourne Again Shell. COMMAND.COM

cc C compiler. This is available on most systems. There are many

switches to modify the behaviour of cc. See the man pages for more

details.

GCC

cd [directory] Change to directory [directory]. CD

chfn Change User Information

chmod [args]
[file]

Change permissions of [file]. [args] consists of 3 characters. The

first is u, g or o (user, group or other). The second is + or -.

The third is r, w or x (read, write or execute).

ATTRIB

Unix/Linux tutorial http://hven.swarthmore.edu/~burns/unix.html

6 of 11 09/17/2006 04:16 PM

chown
[user].[group]
[file]

Change ownership of [file] to the user [user] and group [group].

clear Clears the terminal CLS

cp [file1]
[file2]

Copy [file1] to [file2] COPY

df Prints out the amount of free disk space on each partition currently

mounted

chkdsk

diff [file1]
[file2]

Print out the differences between [file1] and [file2] COMP

echo Prints out its arguments, doing variable substitution. ECHO

env Prints out environment variables SET

expr [formula] Performs numerical computation, using numbers, environment

variables and operators. See man pages for syntax.

find [path]
[conditions]

Tool to locate files below the [path] subdirectory tree. There are

many [conditions], including file names, dates, sizes, etc.

finger [user] Display information about [user]. Can be a user on the current

machine, or on another machine, using the user@hostname syntax

grep [regexp]
[file(s)]

grep searches the names [files] for occurrences of [regexp], printing

each line containing it.

gzip [file] Compress [file], renaming it [file].gz. PKZIP

less [filename] Print out [filename] one page at a time, prompting the user at the

end of each page.

MORE

lpr Send files to a printer PRINT

ls [options] List the contents of a directory. Lots of switches to control

information printed out.

DIR

logout Log out of the current shell. Usually exit will do the same thing. EXIT

mail Interactive mail tool. See man pages

man [command] Print out man pages on specified [command]. HELP

mkdir [name] Make the subdirectory [name] MD

passwd Change your password.

pwd Show current directory.

rlogin [host] Log into a remote [host] TELNET

rm [file] Remove (delete) a [file]. CAUTION: Once deleted, a file is gone

for good (unless it is backed up somewhere). There is no undelete

command.

ERASE

rmdir
[directory]

Remove (delete) a [directory]. RMDIR

sh The Bourne Shell. This is the standard shell, of which bash is a

derivative.

COMMAND.COM

sort A very useful utility for sorting files. See man pages for all the

options.

tcsh A derivative of the csh shell COMMAND.COM

telnet [host] TELNET to a remote [host]. Similar to rlogin. TELNET

top Displays the most CPU-intensive jobs currently running. Type 'q' to

exit.

Unix/Linux tutorial http://hven.swarthmore.edu/~burns/unix.html

7 of 11 09/17/2006 04:16 PM

vi The Visual Editor. This is the standard editor in UNIX (i.e., it is

guaranteed to be available). Emacs is the other commonly used

editor. See next section on using vi.

EDIT

w Displays information about the system, including all currently

logged in users.

wc [file] Word count. Prints the number of characters, words and lines in

[file].

write [user] Initiate a write session to [user]. If [user] is logged in and is

accepting messages, whatever you write to your terminal after this

command will appear on [user]'s terminal. Type Ctrl-D to

terminate the session.

There are many other commands besides the ones mentioned above. If you need to get something done that

seems non-standard, before you go and write a C program to do it, poke around and make sure there isn't a

command that will do the same thing!

Job Control

In order for UNIX to be multi-user, it must also be multi-tasking (otherwise people would have to take

turns). Multi-tasking simply means that many processes, or jobs are running on the system at the same time.

Each process is getting part of the processor's time. Jobs that you run on the system can either be run in the

foreground or the background. When you run something in the foreground, control of the terminal will be

restored only when the job is finished. As an example, try running the following command:

find / -name "ls" -print -xdev > stdout.txt 2> stderr.txt

This command starts searching for a file with the name "ls" in the root directory (/) and all its subdirectories,

printing the result to the terminal. The -xdev switch prevents the command from searching on other partitions

except the one it starts on. The extra bit on the end (> output.txt 2> errors.txt) tells the shell to

redirect the regular output and error messages to a couple of files instead of sending them to the terminal

(we'll see more about redirection later). As you can imagine, this command could take quite a long time to

execute. You might wish to enter more commands while you wait. You can do this by running the job in the

background. To do this, simply append an ampersand (&) after the command. Using our previous example:

$ find / -name "ls" -print -xdev > /dev/null 2> /dev/null &
[1] 4564
$

Control is returned to you almost immediately. In addition, the shell returns two numbers, one in square

brackets. The one in square brackets is the job number and the other one is the process id number. The shell

will notify you when a job has ended. To see what jobs you are currently running in the background, simply

use the command jobs. If you wish to stop a job that is running in the background, you must send it a signal.

This is done using the kill command. To send a request to stop, first try kill -1 [process]. You specify the

process by its process id number. The -1 switch indicates the signal you wish to send (in this case SIGHUP,

which is a rather gentle kick). Some jobs may be a bit stubborn about quitting, in which case you can try kill

-9 [process] (which will send the more forceful SIGKILL signal).

If you don't remember what id number your process has, simply use the ps command, which gives you

information about your running jobs, including their process id numbers (PID). top is also a useful command:

it lists the most CPU-intensive jobs currently running. Hit 'q' to exit from top.

If you've started a job without using the ampersand (&), you can still put it in the background. To do this, first

Unix/Linux tutorial http://hven.swarthmore.edu/~burns/unix.html

8 of 11 09/17/2006 04:16 PM

you suspend the job by hitting < CTRL-Z >. This suspends the job and returns control to you. You then type

the bg command, which will let the job resume in the background.

If you have written a lengthy bit of code (which you will be doing later on) that will take a long time to run,

you can run it in the background and then logout of the system. Your job will continue to run without you.

However, if it is a particularly intensive job, you will likely inconvenience other users, since the system will

be more sluggish. To get around this, you use the nice command. This tells the system that your job should

have less priority. Simply type nice -# followed by your command. # indicates the priority level you wish to

assign to your job. On Linux, # ranges from 0 (highest priority) to 19 (lowest priority).

I/O Redirection

Most programs and commands produce information that is written to the terminal. They can also issue

warnings or error messages as well, which are also written to the terminal. But suppose you would like to

save this information to a file instead of reading it as it is printed. This could be useful if the command

produces more than one screenfull of output. Your shell gives you a way of redirecting the output of a

command to a file. Further, you might not wish to save the error messages to the same file (or any file at all).

This is also possible.

The first thing to realize is that although the standard output and error messages are both being written to the

screen, they are not the same output stream; therefore it is possible to differentiate them. We've seen a

glimpse of this already with the find command:

find / -name "ls" -print -xdev > stdout.txt 2> stderr.txt

As you can see, to redirect the standard output of a command to a file, we use the > symbol. To redirect the

standard error stream, we use the 2> symbol. If you want to get rid of a stream completely (i.e., you don't

want it printed to the terminal or put in a file), simply redirect the stream to the special file /dev/null, which

is like a black hole for data.

While output redirection is very nice, UNIX also allows for input redirection as well. Consider the

command wc. If we create a simple file (here we get to use output redirection):

$ echo "This is a simple text file" > simple.txt

we can now count how many characters, words and lines this file has in two different ways:

$ wc simple.txt
 1 6 27 simple.txt
$ wc < simple.txt
 1 6 27

For the first command, I gave the name of the file explicitly as an argument to wc. In the second command I

redirected the contents of the file to wc's standard input. The result is the same, except that in the first case,

wc knows the name of the file (and gives it as output), whereas in the second case, it does not. Many

commands will allow you to do this (e.g., sort).

'So what?', you might ask. By itself, this does not seem like such a great thing. However, it gives us

considerable power when you want to do complicated things. Suppose (for some reason) I wanted to know

how many files there are in the directory /usr/bin which contain the string 'ls' in their names. I could go and

count them by hand. Or I could use the commands which are already available to me. However, there is no

one program which will do this. But if I could somehow redirect the output of one command to the input of

another, maybe several small programs can do the job together. The command ls will list all files. The

Unix/Linux tutorial http://hven.swarthmore.edu/~burns/unix.html

9 of 11 09/17/2006 04:16 PM

command grep [string] will only print out lines which contain [string] and the command wc will count up

lines. So, we can do the following:

$ ls /usr/bin | grep ls | wc
 6 6 106

Here, the pipe symbol (|) takes the output of the precedeing command and sends it to the input of the next

command. We have executed 3 commands to handle one problem, which UNIX people call making a

pipeline. Real UNIX gurus delight in making huge pipelines with complicated output redirection to perform

amazing tasks.

The vi Editor

For those of us who learned UNIX on a more "primitive" system, vi was the editor of choice (it was the only

choice). Now there are hosts of different editors, including emacs, joe and textedit. I've tried all these editors

to some extent. They all have their pros and cons. Emacs is probably the most popular editor out there. Despite

all this, I still prefer to use vi (or vim on Linux), because it's guaranteed to be available, it's small and you can

do everything from your keyboard (no menus which require a mouse, for example). However, it's a bit

non-intuitive for those who are used to the DOS/Windows type of editor. For more information on the other

editors, refer to their man pages.

Vi has essentially 2 modes. When you enter vi, you are usually in the command mode. In this mode, you can

enter commands, move around, or enter one of the input modes. You can't start typing away, as you might

expect, because in command mode, the letters you type are actaully commands. For instance, typing dd will

delete one entire line of text.

To move around in command mode, you can usually use the cursor keys the way you would expect. If this

doesn't work, you can fall back on the h, j, k and l keys. Use h and l to go left and right, respectively. Use

k and j to move up and down, respectively. Here are some more movements you can do in command mode:

h,j,k,l Left, up, down, right one character
w, b Forward, back one word
), (Go to beginning of next, current sentence
0, $ Go to beginning, end of the current line
^ First non-blank character
Ctrl-F, Ctrl-B Scroll forward, backward one screen
Ctrl-D, Ctrl-U Scroll forward, backward half a screen

When you reach the spot you want to start making changes, you will then usually enter one of the input

modes. By typing 'i', for instance, you enter insert mode. From now on, whatever you type will be inserted at

the current cursor position. To exit any of the input modes, hit Esc, and you will be back in command mode.

Here are some more of the available input modes:

a Append after the cursor position
A Append at the end of the line
i Insert before cursor
I Insert at beginning of line
o Open a line below cursor
O Open a line above cursor
R Begin overwriting at cursor position.

Some commands require arguments, so simple one-key commands won't suffice. Therefore, we have what

are called colon-commands. They consist of a colon (:), followed by the command and arguments. For

example, to read in a file called dummy and insert its contents after the cursor, you would type in :r dummy.

Here are some other commands:

Unix/Linux tutorial http://hven.swarthmore.edu/~burns/unix.html

10 of 11 09/17/2006 04:16 PM

:# Go to line #
:e [file] Edit [file]
:help Get help (only in vim)
:r [file] Read in [file] and insert it at the cursor
:w [file] Write to [file]. :w saves to the current file
:wq Save the current file and exit
:q! Do not save the current file and exit

That should give you enough to get going. There are a lot more commands available, such as search and

replace.

Putting it all Together

By now you should be proficient at logging in and executing a few commands. Now we're going to look at a

specific case which you will no doubt find useful: editing and compiling a C program. Begin by logging in to

your account. It's a good idea to have a seperate directory for each of your projects. I usually have a directory

called src for all my source code, with subdirectories below it for each project. So, make a directory for your

source code. For example:

~ $ mkdir src
~ $ cd src
~/src $ mkdir first
~/src $ cd first
~/src/first $

Now use your favorite text editor to enter the following bit of code.

/* A simple program which prints out a message */

#include <stdio.h>

main()
{
 printf("Goodbye World!\n");
}

Save the file as first.c or something similar. If we now list the files in our directory, we should get

something like:

~/src/first $ ls
first.c
~/src/first $

Now, we shall compile this bit of code. To do this, you run the C compiler:

 ~/src/first $ cc -o first first.c

The -o switch tells the compiler to name the executable file first instead of the default a.out. Now you will

have three files in your directory: first.c, first.o and first. The file first.o is the object file which is

created and then linked with the standard libraries to produce the executable file first. To see if the program

works, just type ./first in the current directory (the ./ forces bash to search for the command first in the

current directory).

Let's suppose you really like the executable file you've just produced and would like to be able to run the file

from no matter what directory you are currently in. All you have to do is make sure that the file is somewhere

in your path. Your path is a list of directories where the shell will look for executable files. To see what your

path is currently set to, just type echo $PATH. The elements in the list are seperated by colons (:). You can add

a directory to the path by typing:

 $ export PATH="$PATH:[new directory]"

Unix/Linux tutorial http://hven.swarthmore.edu/~burns/unix.html

11 of 11 09/17/2006 04:16 PM

I like to keep all my finished executable files in a directory called bin below my home directory. I then add

~/bin to my path statement in my .bash_profile file.

If everything works, congratulations! Go have a coffee. You're on your way to becoming a UNIX guru.

