
CS440 – Searching

Purpose: In this lab, your Pacman agent will find paths through his maze world, both
to reach a particular location and to collect food efficiently. You will build general search
algorithms and apply them to Pacman scenarios.

Getting Started: Download the search.zip files and complete each of the following assign-
ments to be submitted for grading. Each should be done individually but you can consult
with a classmate to discuss your strategies or if you get an error message that you do not
understand.

You should be able to play a game of Pacman by running pacman.py. Pacman lives in
a shiny blue world of twisting corridors and tasty round treats. Navigating this world effi-
ciently will be Pacman’s first step in mastering his domain.

In searchAgents.py you will find a fully implemented SearchAgent which plans out a
path through Pacman’s world and then executes that path step-by-step. The search algo-
rithms for formulating a plan are not implemented – that’s your job.

First you can test SearchAgent on a tiny maze with a hard coded algorithm by running
pacman.py with the command line option:
-l tinyMaze -p SearchAgent -a fn=tinyMazeSearch

Now it’s time to write full-fledged generic search functions to help Pacman plan routes!

Remember that a search node must contain not only a state but also the information nec-
essary to reconstruct the path (plan) which gets to that state.

Important note: All of your search functions need to return a list of actions that will
lead the agent from the start to the goal. These actions all have to be legal moves (valid
directions, no moving through walls).

Another important note: Make sure to use the Stack, Queue and PriorityQueue data
structures provided to you in util.py! These data structure implementations have partic-
ular properties which are required for compatibility with the autograder.

Hint: Each algorithm is very similar. Algorithms for DFS, BFS, UCS, and A* differ only in
the details of how the fringe is managed. So, concentrate on getting DFS right and the rest
should be relatively straightforward. Indeed, one possible implementation requires only a
single generic search method which is configured with an algorithm-specific queuing strat-
egy. (Your implementation need not be of this form to receive full credit).

1



Assignment 1 – Finding a Fixed Food Dot using Depth First Search:

Implement the depth-first search (DFS) algorithm in the depthFirstSearch function
in search.py. To make your algorithm complete, write the graph search version of
DFS, which avoids expanding any already visited states.

Criteria for Success:

Your code should quickly find a solution when running pacman.py for:
-l tinyMaze -p SearchAgent

-l mediumMaze -p SearchAgent

-l bigMaze -z .5 -p SearchAgent

The Pacman board will show an overlay of the states explored, and the order in which
they were explored (brighter red means earlier exploration). Is the exploration order
what you would have expected? Does Pacman actually go to all the explored squares
on his way to the goal?

Hint: If you use a Stack as your data structure, the solution found by your DFS
algorithm for mediumMaze should have a length of 130 (provided you push successors
onto the fringe in the order provided by getSuccessors; you might get 246 if you push
them in the reverse order). Is this a least cost solution? If not, think about what
depth-first search is doing wrong.

You probably also will want to use the autograder with the command line -q q1 to
verify everything is working.

2



Assignment 2 – Breadth First Search:

Implement the breadth-first search (BFS) algorithm in the breadthFirstSearch func-
tion in search.py. Again, write a graph search algorithm that avoids expanding any
already visited states.

Criteria for Success:

Test your code the same way you did for depth-first search.:
-l mediumMaze -p SearchAgent -a fn=bfs

-l bigMaze -p SearchAgent -a fn=bfs -z .5

Does BFS find a least cost solution? If not, check your implementation.

Hint: If Pacman moves too slowly for you, try the option --frameTime 0.

Note: If you’ve written your search code generically, your code should work equally well
for the eight-puzzle search problem without any changes. Try running eightpuzzle.py.

You will also want to use the autograder with -q q2 to verify everything is work-
ing.

3



Assignment 3 – Varying the Cost Function:

While BFS will find a fewest-actions path to the goal, we might want to find paths
that are ”best” in other senses. Consider mediumDottedMaze and mediumScaryMaze.

By changing the cost function, we can encourage Pacman to find different paths. For
example, we can charge more for dangerous steps in ghost-ridden areas or less for steps
in food-rich areas, and a rational Pacman agent should adjust its behavior in response.

Implement the uniform-cost graph search algorithm in the uniformCostSearch func-
tion in search.py. I encourage you to look through util.py for some data structures
that may be useful in your implementation.

Criteria for Success:

You should now observe successful behavior in all three of the following layouts, where
the agents below are all UCS agents that differ only in the cost function they use (the
agents and cost functions are written for you):
-l mediumMaze -p SearchAgent -a fn=ucs

-l mediumDottedMaze -p StayEastSearchAgent

-l mediumScaryMaze -p StayWestSearchAgent

Note: You should get very low and very high path costs for the StayEastSearchA-
gent and StayWestSearchAgent respectively, due to their exponential cost functions
(see searchAgents.py for details)..

You will also want to use the autograder with -q q3 to verify everything is working.

4



Assignment 4 – A*-search:

Implement A* graph search in the empty function aStarSearch in search.py. A*
takes a heuristic function as an argument. Heuristics take two arguments: a state in
the search problem (the main argument), and the problem itself (for reference infor-
mation). The nullHeuristic heuristic function in search.py is a trivial example.

Criteria for Success:

You can test your A* implementation on the original problem of finding a path through
a maze to a fixed position using the Manhattan distance heuristic (implemented already
as manhattanHeuristic in searchAgents.py).:
-l bigMaze -z .5 -p SearchAgent -a fn=astar,heuristic=manhattanHeuristic

You should see that A* finds the optimal solution slightly faster than uniform cost
search (about 549 vs. 620 search nodes expanded in our implementation, but ties in
priority may make your numbers differ slightly). What happens on openMaze for the
various search strategies?

You will also want to use the autograder with -q q4 to verify everything is working.

5



Assignment 5 – Finding All the Corners:

The real power of A* will only be apparent with a more challenging search problem.
Now, it’s time to formulate a new problem and design a heuristic for it.

In corner mazes, there are four dots, one in each corner. Our new search problem
is to find the shortest path through the maze that touches all four corners (whether
the maze actually has food there or not). Note that for some mazes like tinyCorners,
the shortest path does not always go to the closest food first! Hint: the shortest path
through tinyCorners takes 28 steps.

Note: Make sure to complete Assignment 2 before working on this, because this ques-
tion builds upon that work.

Implement the CornersProblem search problem in searchAgents.py. You will need
to choose a state representation that encodes all the information necessary to detect
whether all four corners have been reached.

Criteria for Success:

Now, your search agent should solve:
-l tinyCorners -p SearchAgent -a fn=bfs,prob=CornersProblem

-l mediumCorners -p SearchAgent -a fn=bfs,prob=CornersProblem

To receive full credit, you need to define an abstract state representation that does
not encode irrelevant information (like the position of ghosts, where extra food is,
etc.). In particular, do not use a Pacman GameState as a search state. Your code will
be very, very slow if you do (and also wrong).

Hint: The only parts of the game state you need to reference in your implementa-
tion are the starting Pacman position and the location of the four corners.

My implementation of breadthFirstSearch expands just under 2000 search nodes on
mediumCorners. However, heuristics (used with A* search) can reduce the amount of
searching required.

You will also want to use the autograder with -q q5 to verify everything is working.

6



Assignment 6 – Corners Problem Heuristic:

Implement a non-trivial, consistent heuristic for the CornersProblem in the function
cornersHeuristic.

Admissibility vs. Consistency: Remember, heuristics are just functions that take
search states and return numbers that estimate the cost to a nearest goal. More ef-
fective heuristics will return values closer to the actual goal costs. To be admissible,
the heuristic values must be lower bounds on the actual shortest path cost to the
nearest goal (and non-negative). To be consistent, it must additionally hold that if an
action has cost c, then taking that action can only cause a drop in heuristic of at most c.

Admissibility isn’t enough to guarantee correctness in graph search – you need the
stronger condition of consistency. However, admissible heuristics are usually also con-
sistent, especially if they are derived from problem relaxations. Therefore it is usually
easiest to start out by brainstorming admissible heuristics. Once you have an admissi-
ble heuristic that works well, you can check whether it is indeed consistent, too. The
only way to guarantee consistency is with a proof. However, inconsistency can often
be detected by verifying that for each node you expand, its successor nodes are equal
or higher in in f-value. Moreover, if UCS and A* ever return paths of different lengths,
your heuristic is inconsistent. This stuff is tricky!

Non-Trivial Heuristics: The trivial heuristics are the ones that return zero every-
where (UCS) and the heuristic which computes the true completion cost. The former
won’t save you any time, while the latter will timeout the autograder. You want a
heuristic which reduces total compute time, though for this assignment the autograder
will only check node counts (aside from enforcing a reasonable time limit).

Criteria for Success:

Now, your search agent should solve:
-l mediumCorners -p AStarCornersAgent -z 0.5

Your heuristic must be a non-trivial non-negative consistent heuristic to receive any
points. Make sure that your heuristic returns 0 at every goal state and never returns
a negative value. Depending on how few nodes your heuristic expands, you’ll be graded:

0/3 pts for expanding more than 2000 nodes
1/3 pts for expanding at most 2000 nodes
2/3 pts for expanding at most 1600 nodes
3/3 pts for expanding at most 1200 nodes

You will want to use the autograder with -q q6 to verify everything is working.

7



Assignment 7 – Eating All the Dots:

For this problem we want to eat all the Pacman food in as few steps as possible.
We’ll need a new search problem definition which formalizes the food-clearing prob-
lem: FoodSearchProblem in searchAgents.py (implemented for you). A solution is
defined to be a path that collects all of the food in the Pacman world. For the present
assignment, solutions do not take into account any ghosts or power pellets; solutions
only depend on the placement of walls, regular food and Pacman. (Of course ghosts
can ruin the execution of a solution! We’ll get to that in future labs.) If you have
written your general search methods correctly, A* with a null heuristic (equivalent to
uniform-cost search) should quickly find an optimal solution to testSearch with no code
change on your part (total cost of 7):

-l testSearch -p AStarFoodSearchAgent

You should find that UCS starts to slow down even for the seemingly simple tiny-
Search so we really need a good heuristic.

Fill in foodHeuristic in searchAgents.py with a consistent heuristic for the Food-
SearchProblem.

Criteria for Success:

Try your agent on the trickySearch board:

-l trickySearch -p AStarFoodSearchAgent

My UCS agent finds the optimal solution exploring over 16,000 nodes.

Any non-trivial non-negative consistent heuristic will receive 1 point. Make sure that
your heuristic returns 0 at every goal state and never returns a negative value. De-
pending on how few nodes your heuristic expands, you’ll get additional points:

1/4 pts for expanding more than 15000 nodes
2/4 pts for expanding at most 15000 nodes
3/4 pts for expanding at most 12000 nodes
4/4 pts for expanding at most 9000 nodes
5/4 pts for expanding at most 7000 nodes (hard).

You will want to use the autograder with -q q7 to verify everything is working and
don’t be alarmed if the tests take some time to run.

8



Assignment 8 – Suboptimal Search:

Sometimes, even with A* and a good heuristic, finding the optimal path through all
the dots is hard. In these cases, we’d still like to find a reasonably good path, quickly.
In this assignment, you’ll write an agent that always greedily eats the closest dot.

ClosestDotSearchAgent is implemented for you in searchAgents.py, but it’s missing
a key function that finds a path to the closest dot.

Implement the function findPathToClosestDot in searchAgents.py

Hint: The quickest way to complete findPathToClosestDot is to fill in the class
AnyFoodSearchProblem, which is missing its goal test. Then, solve that problem with
an appropriate search function. The solution should be very short!

Your ClosestDotSearchAgent won’t always find the shortest possible path through the
maze. To make sure you understand why you can try to come up with a small example
where repeatedly going to the closest dot does not result in finding the shortest path
for eating all the dots.

Criteria for Success:

Test your function with:
-l bigSearch -p ClosestDotSearchAgent -z .5

You will also want to use the autograder with -q q8 to verify everything is working.

Submit your code in Canvas for grading.

9


