CS440 — Reinforcement Learning

Purpose: In this lab, you will implement value iteration and Q-learning. You will test
your agents first on Gridworld (from class), then apply them to Pacman.

Getting Started: Download the reinforcement.zip files and complete each of the following
assignments to be submitted for grading. FEach should be done individually but you can
consult with a classmate to discuss your strategies or if you get an error message that you
do not understand.



Assignment 1 — Value Iteration:

Recall the value iteration formula:

Visa(s) = max Y T(s,a,5) [R(s,a,5') +Vi(s)]

Write a value iteration agent in ValueIterationAgent, which has been partially spec-
ified for you in valueIterationAgents.py. Your value iteration agent is an offline
planner, not a reinforcement learning agent, and so the relevant training option is
the number of iterations of value iteration it should run in its initial planning phase.
ValuelterationAgent takes an MDP on construction and runs value iteration for the
specified number of iterations before the constructor returns.

Value iteration computes k-step estimates of the optimal values, Vi. In addition to
running value iteration, implement the following methods for ValuelterationAgent us-
ing V.

1. computeActionFromValues(state) computes the best action according to the
value function given by self.values.

2. computeQValueFromValues(state, action) returns the Q-value of the (state,
action) pair given by the value function given by self.values.

These quantities are all displayed in the GUI: values are numbers in squares, Q-values
are numbers in square quarters, and policies are arrows out from each square.

Important: In class we discussed the ”batch” version of value iteration where each
vector Viis computed from a fixed vector V;_; . This means that when a state’s value
is updated in iteration k based on the values of its successor states, the successor state
values used in the value update computation should be those from iteration k-1 (even if
some of the successor states had already been updated in iteration k). Use this version!
Criteria for Success:

Use the autograder with ql to verify everything is working.

You can also run your code by running gridworld.py with the command options:
-a value -i 5

After five iterations you should get:




VALUES AFTER 5 ITERATIONS




Assignment 2 — Bridge Crossing Analysis:

BridgeGrid is a grid world map with the a low-reward terminal state and a high-reward
terminal state separated by a narrow ”bridge”, on either side of which is a chasm of
high negative reward. The agent starts near the low-reward state. With a discount of
0.9 and the default noise of 0.2, the optimal policy does not cross the bridge. You can
see the result by running gridworld.py with the options:

-a value -i 100 -g BridgeGrid --discount 0.9 --noise 0.2

VALUES AFTER 100 ITERATIONS

Change only ONE of the discount and noise parameters so that the optimal policy
causes the agent to attempt to cross the bridge. Put your answer in question2() of
analysis.py. (Noise refers to how often an agent ends up in an unintended successor
state when they perform an action.) The default corresponds to:

Criteria for Success:
Use the autograder with q2 to verify everything is working. The autograder checks

that you only changed one of the given parameters, and that with this change, a cor-
rect value iteration agent should cross the bridge.




Assignment 3 — Policies:

Consider the DiscountGrid layout, shown below. This grid has two terminal states
with positive payoff (in the middle row), a close exit with payoff +1 and a distant exit
with payoff +10. The bottom row of the grid consists of terminal states with negative
payoff (shown in red); each state in this ”cliff” region has payoff -10. The starting
state is the yellow square. We distinguish between two types of paths: (1) paths that
"risk the cliff” and travel near the bottom row of the grid; these paths are shorter but
risk earning a large negative payoff, and are represented by the red arrow in the figure
below. (2) paths that "avoid the cliff” and travel along the top edge of the grid. These
paths are longer but are less likely to incur huge negative payoffs. These paths are
represented by the green arrow in the figure below.

Choose settings of the discount, noise, and living reward parameters for this MDP
to produce optimal policies of several different types. Your setting of the parameter
values for each part should have the property that, if your agent followed its optimal
policy without being subject to any noise, it would exhibit the given behavior. If a
particular behavior is not achieved for any setting of the parameters, assert that the
policy is impossible by returning the string 'NOT POSSIBLE’.

Here are the optimal policy types you should attempt to produce:

1. Prefer the close exit (+1), risking the cliff (-10)
2. Prefer the close exit (+1), but avoiding the cliff (-10)

3. Prefer the distant exit (+10), risking the cliff (-10)

N

. Prefer the distant exit (4+10), avoiding the cliff (-10)
5. Avoid both exits and the cliff (so an episode should never terminate)

Criteria for Success:

Use the autograder with g3 to verify that the desired policy is created for each case.
In analysis.py, question3a() through question3e() should each return a 3-item tuple
of (discount, noise, living reward).




Assignment 4 — Q-Learning:

Note that your value iteration agent does not actually learn from experience. Rather,
it ponders its MDP model to arrive at a complete policy before ever interacting with
a real environment. When it does interact with the environment, it simply follows the
precomputed policy (e.g. it becomes a reflex agent). This distinction may be subtle
in a simulated environment like a Gridword, but it’s very important in the real world,
where the real MDP is not available.

You will now write a Q-learning agent, which does very little on construction, but
instead learns by trial and error from interactions with the environment through its
update(state, action, nextState, reward) method. A stub of a Q-learner is spec-
ified in QLearningAgent in qlearningAgents.py. For this question, you must imple-
ment the update, computeValueFromQValues, getQValue, and
computeActionFromQValues methods.

For computeActionFromQValues, you should break ties randomly for better behav-
ior. The random.choice() function will help. In a particular state, actions that your
agent hasn’t seen before still have a Q-value, specifically a Q-value of zero, and if all of
the actions that your agent has seen before have a negative Q-value, an unseen action
may be optimal.

Make sure that in your computeValueFromQValues and computeActionFromQValues
functions, you only access Q values by calling getQValue . This abstraction will be
useful later when you override getQValue to use features of state-action pairs rather
than state-action pairs directly.

Criteria for Success:

The autograder with q4 will run your Q-learning agent and check that it learns the
same Q-values and policy as the reference implementation when each is presented with
the same set of examples.




Assignment 5 — Q-Learning and Pacman:

Time to play some Pacman! Pacman will play games in two phases. In the first
phase, training, Pacman will begin to learn about the values of positions and actions.
Because it takes a very long time to learn accurate Q-values even for tiny grids, Pac-
man’s training games run in quiet mode by default, with no GUI (or console) display.
Once Pacman’s training is complete, he will enter testing mode. When testing, Pac-
man’s self.epsilon and self.alpha will be set to 0.0, effectively stopping Q-learning
and disabling exploration, in order to allow Pacman to exploit his learned policy. Test
games are shown in the GUI by default. Without any code changes you should be able
to run Q-learning Pacman for very tiny grids by running pacman.py with the command
options:

-p PacmanQAgent -x 2000 -n 2010 -1 smallGrid

Note that PacmanQAgent is already defined for you in terms of the QLearningAgent
you’ve already written. PacmanQAgent is only different in that it has default learning
parameters that are more effective for the Pacman problem (epsilon=0.05, alpha=0.2,
gamma=0.8). If your QLearningAgent works for gridworld.py but does not seem to be
learning a good policy for Pacman on smallGrid, it may be because your getAction
and/or computeActionFromQValues methods do not in some cases properly consider
unseen actions. In particular, because unseen actions have by definition a Q-value of
zero, if all of the actions that have been seen have negative Q-values, an unseen action
may be optimal. Beware of the argmax function from util.Counter!

Criteria for Success:

Use the autograder with g5 to check your code. If you want to watch 10 training games
to see what is going on, run pacman.py with the command option:

-p PacmanQAgent -n 10 -1 smallGrid -a numTraining=10

Once Pacman is done training, he should win very reliably in test games (at least
90% of the time), since now he is exploiting his learned policy. However, you will find
that training the same agent on the seemingly simple mediumGrid does not work well.
In my implementation, Pacman’s average training rewards remain negative throughout
training. At test time, he plays badly, probably losing all of his test games. Training
will also take a long time, despite its ineffectiveness.

Pacman fails to win on larger layouts because each board configuration is a separate
state with separate Q-values. He has no way to generalize that running into a ghost is
bad for all positions. Obviously, this approach will not scale.




Assignment 6 — Approximate Q-Learning:

Implement an approximate Q-learning agent that learns weights for features of states,
where many states might share the same features. Write your implementation in the
ApproximateQAgent class in qlearningAgents. py, which is a subclass of PacmanQAgent.

Approximate Q-learning assumes the existence of a feature function f(s,a) over state
and action pairs, which yields a vector fi(s,a)..fi(s,a)..fn(s,a) of feature values. Fea-
ture functions are provided for you in featureExtractors.py. Feature vectors are
util.Counter (like a dictionary) objects containing the non-zero pairs of features and
values; all omitted features have value zero.

The approximate Q-function takes the following form
Qs,a) = fils,a)w;
i=1

where each weight w; is associated with a particular feature f;(s,a). In your code,
you should implement the weight vector as a dictionary mapping features (which the
feature extractors will return) to weight values. You will update your weight vectors
similarly to how you updated Q-values:

w; « w; +a-dif ference - fi(s,a)
dif ference + (r +ymaxQ(s',a’)) — Q(s, a)

Note that the dif ference term is the same as in normal Q-learning, and r is the expe-
rienced reward.

ApproximateQAgent is a subclass of QLearningAgent, and it therefore shares sev-
eral methods like getAction. Make sure that your methods in QLearningAgent call
getQValue instead of accessing Q-values directly, so that when you override getQValue
in your approximate agent, the new approximate g-values are used to compute actions.

Criteria for Success:

By default, ApproximateQAgent uses the IdentityExtractor, which assigns a single
feature to every (state,action) pair. With this feature extractor, your approximate
Q-learning agent should work identically to PacmanQAgent. You may test this by
running pacman.py with the command options:

-p ApproximateQAgent -x 2000 -n 2010 -1 smallGrid

Once you're confident that your approximate learner works correctly with the identity
features, run your approximate Q-learning agent with the custom feature extractor,
which can learn to win with ease:

-p ApproximateQAgent -a extractor=SimpleExtractor -x 50 -n 60 -1 mediumGrij




Even much larger layouts should be no problem for your ApproximateQAgent. (warn-
ing: this may take a few minutes to train)
-p ApproximateQAgent -a extractor=SimpleExtractor -x 50 -n 60 -1 mediumClassic

If you have no errors, your approximate Q-learning agent should win almost every
time with these simple features, even with only 50 training games.

The autograder with q6 will run your approximate Q-learning agent and check that
it learns the same Q-values and feature weights as the reference implementation when
each is presented with the same set of examples.

Submit your code in Canvas for grading.



