
CS350 - Equivalence of PDAs and CFLs

Objectives: In this activity you will learn how PDAs and CFLs are equivalent

To see that PDAs and CFLs are equivalent we must show that every CFG must have an
equivalent PDA and that every PDA must have an equivalent CFG.

We will start by taking a CFG and construct a PDA to recognize the same language.

Download the files ex10.1 and ex10.2 and start JFLAP. Open the file ex10.1 containing a
CFG in the grammar editor. Select under the Convert menu Transform CFG to PDA (LL).
You will be supplied with a basic PDA with three states. It starts by pushing the start sym-
bol of the grammar onto the stack. In the second state it simply matches an input symbol
with the symbol at the top of the stack. It then non-deterministically transitions on an
empty stack to an accepting state.
The goal for an input string is the following: If q2 is reached, then all the symbols in the
input string were pushed on the stack using the productions in the grammar and popped
off the stack in the same order they appear in the input string. We have already added the
”popped off” loop transitions on q1.
Select a production rule and push the Create Selected button. This will add an additional
transition to the PDA. Continue with the process until the PDA is complete.
Test out both the original CFG and the constructed PDA until you assure yourself that
they do indeed accept the same language.

Explain in your own words how the additional PDA transitions are added and why this
creates an equivalent PDA.

We must now show that every NPDA must have an equivalent CFG.

The idea behind the conversion from an NPDA to an equivalent CFG is to convert each
transition into one or more productions that mimic the behavior. To simplify the process,
JFLAP will require that the NPDA be in a certain format. If it is not, the user must convert
it to the appropriate format. All transitions must pop exactly one symbol and push exactly
zero or two symbols. In other words, with each transition the stack will increase or decrease
its size by one. The NPDA must have one final state and least one transition into the final
state that pops Z off the stack.

For those transitions that pop one symbol and push no symbols, one production is gen-
erated to mimic this behavior. For those transitions that pop one symbol and push two
symbols, a lot of productions are generated to indicate possible ways these two symbols
that are pushed could eventually be popped off the stack. Many useless productions will be
generated in addition to the correct productions.

Open file ex10.2 in the PDA editor. We want a CFG which recognizes this language.
Select Convert to grammar. Oops! You get an error message because the NPDA is not in
the correct format. Correct this by adding another state and replace the transition with

1



two: One that goes from q1 to the new state and pushes two symbols xb where x is just an
added symbol: (b,axb);. Then another which goes from the new state to q2 and pops the
x: (λ,x;λ).

Try the conversion again with the fixed NPDA. We are now ready to convert to a CFG.
Variables in the grammar will be represented in the form (qiA, qj) where qi and qj represent
states from the NPDA and A is a stack symbol. The meaning of this variable is ”if when
moving along a path from state qi to state qj , the stack is exactly the same except that A
is removed from the stack”. The start variable S will be represented by our goal (q0Zq4);

The algorithm is kind of messy but basically, for each transition from (qi,a,A) to qj which
pops the A, we generate one production (qi, A, qj) → a
For each transition of the form (qi,a,A) to qj which pops the A and pushes BC, we gen-
erate the productions (qiAqk) → a(qjBql)(qlCqk) for all qk and ql.

This should create a grammar that starts with the goal and works backwards to gener-
ate the input. Test it out with the Hints from JFLAP. Then export the grammar and test
both the original NPDA and the grammar to assure yourself that they are equivalent.

Explain in your own words why such a generated grammar would give the same language
as the PDA.

Since we are able to convert a CFG to an NPDA and conversely, convert anNPDA to a
CFG, both represent the context-free languages!

2


