
CS330 – Sorting and Lower Bounds

Purpose: We will examine algorithms that sort an array of values. There are many, many
sorting algorithms so it is important to understand how well they work and the advantages
and disadvantages of various algorithms. We also want to have a lower bound for sorting.

Knowledge: This activity will help you become familiar with the following content knowl-
edge:

• Swap sorting algorithms

• The heap sort algorithm

• The quicksort algorithm

• Counting sort algorithms

• The lower bound for comparison sort algorithms

Activity: With your group perform the following tasks and answer the questions. You will
be reporting your answers back to the class in 60 minutes.

1. Swap sorts of various kinds, like bubble sort and selection sort, repeatedly scan in-
put, swapping any out-of-order elements. Inversions of an element are the number of
smaller elements to the right of the element. The sum of inversions for all elements
is the number of swaps required by bubble sort. Any algorithm that removes one
inversion per swap requires at least this many swaps.

What is the worst number of total inversions? What input causes this to happen?

1



2. A heap is a complete binary tree with the value at any node being at least as large as
its two children.

Since a heap is a complete binary tree, it can be stored in an array, as we see above.

How would we compute the functions leftChild(i), rightChild(i), and parent(i)

which give the appropriate index for the new element related to the one at position i?

3. Here is a sorting algorithm, heap sort, which uses this heap property.

Algorithm:

Build the heap

Repeat n times:

Remove the root

Repair the heap

To build the heap you must insert n nodes into the initially empty heap. What is the
order of growth for building a heap? What is the cost for repairing a heap? What is
the overall order of growth cost for the heap sort algorithm?
Hint: We saw this material in CS119.

2



4. Here is a sorting algorithm, quicksort

Algorithm:

Pick a pivot value

Split the array into elements less than the pivot and elements greater than the
pivot

Recursively sort the two sublists

Here is a beautiful implementation of this algorithm in Haskell:

quicksort [] = []

quicksort (x:xs) = quicksort small ++ (x: quicksort large) where

small = [y | y <- xs, y<= x]

large = [y | y <- xs, y>x]

What is the cost of doing the split with the pivot?
What is the worst case for picking the pivot?
So what is the worst case for quicksort?

5. Quicksort doesn’t look that great on the worst case but we can determine the average
case by looking at the recurrence relation:

With a LOT of math crunching the closed form for f(n) is O(n log n). You can read
about this if you desire.

3



6. We have now seen a couple of O(n log n) sorting algorithms. To see if this is optimal
we need a lower bound proof. Look at a possible decision tree for sorting three ele-
ments:

Why must there be n! leaves in a sorting decision tree if we have n elements?
Any binary tree of height h has k ≤ 2h leaves. Prove this by induction on h.
So a binary tree with n! leaves must have a height of at least what?
It turns out that log n! is O(n log n) so why does this show that this is the lower bound
for sorting?

7. If we know something about the structure of the data, it is possible to sort it without
comparing elements to each other.

Counting sort requires that the keys being sorted are in a known range {0, 1, ..., k}:

For each element in the input determine how many elements are less than it by
performing a count.

Place each of the elements directly in the position in an array determined by the
count

What is the order of growth and why does this not violate the lower bound that we
have already proved?

4



Activity: With your group perform the following tasks and answer the questions. You will
be reporting your answers back to the class in 30 minutes.

Read about properties of the following sorting algorithms in the many online resources
and see what properties you can discover about the following sorting algorithms:

• insertion sort

• selection sort

• bubble sort

• heap sort

• quick sort

• merge sort

• radix sort

You don’t need to focus on how the sorts work but instead concentrate on input cases that
cause the sort to work poorly and/or well. Consider the amount of time and space that is
required on average, on worst case, and on certain special cases. Are the sorts stable? You
can look up what it means for a sort to be stable.

5



Complete the following assignments to be submitted for grading. Each should be done in-
dividually but you can consult with a classmate to discuss your strategies.

Assignment 1:
Read about the properties of the following sorting algorithms in the many online re-
sources that you can find and then select the sort algorithm(s) that you would use
in the following scenarios. Clearly explain what property of the sorting algorithm(s)
makes it a good choice.

• insertion sort

• selection sort

• bubble sort

• heap sort

• quick sort

• merge sort

• radix sort

1. You are working on an embedded device (an ATM) that only has 4KB (4,096
bytes) of free memory, and you wish to sort the 2,000,000 transactions withdrawal
history by the amount of money withdrawn (discarding the original order of the
transactions

2. You are running a library catalog. You know that the books in your collection are
almost in sorted ascending order by title, with the exception of one book which
is in the wrong place. You want the catalog to be completely sorted in ascending
order

3. To determine which of your Facebook friends were early adopters, you decide to
sort them by their Facebook account ids, which are 64-bit integers. (Recall that
you are super popular, so you have very many Facebook friends.)

4. You have a couple of thousand records of information that contain several fields
including name, address, and grades. The records are already sorted by name.
You want to sort the information by grade but want to make sure that records
with the same grade will be listed in order of the sorted names.

Criteria for Success: You have a clear explanation of what sort you prefer for each
of the scenarios, giving the properties of the sort that make it a good choice. There
may be more than one sort that would be good so you need to justify your choice.

6


