CS330 — Selection Analysis and Lower Bounds

Purpose: We will examine algorithms that select an item in a list that has a desired prop-
erty, like the minimum, maximum, or k*" largest or smallest for some k. Again, once we
have an algorithm we also want to know if this is an optimal algorithm and therefore we
will develop some techniques for finding the lower bound.

Knowledge: This activity will help you become familiar with the following content knowl-
edge:

e Possible selection algorithms
e Using adversary arguments for showing lower bounds

Activity: With your group perform the following tasks and answer the questions. You will
be reporting your answers back to the class in 90 minutes.

1. Consider this algorithm for finding the maximum value in an array:

int FindMax(int[] list,int low, int high){
int max = low;
for(int i=low+1;i<=high; i++)
if (list[il>list[max])
max = i;
return max;

}

What is the cost for a list of size n? Do you think this is optimal?

2. We will think about the problem of finding the max as a series of contests (compar-
isons) where the max value of the comparison wins the contest. The maximum in the
list will be the ultimate winner. We will try a lower bound proof for this problem.:

The winner must compare against all other elements, so there must be n — 1 com-
parisons.

What is the flaw in this argument? Can you give an example where the max need not
be compared to all other elements?



. We can look at the process of comparison by using ”partially ordered sets” or posets.
Suppose four opponents have matches to determine the winner. This process may be
pictured as posets:

@ @ @ agea;(s (%> @ abeats e e
¢ beats
» @ ® ©

Ignoring symmetries, draw four other posets that find a winner for this problem. (Be
careful not to draw extraneous or unneeded comparisons).

. To find the max, we must build a poset having one max and n — 1 losers, starting
from a poset of n singletons. We wish to connect the elements of the poset with the
minimum number of links.

Why can we now argue that this will require n — 1 comparisons? We now have a
lower bound proof!

. Suppose we want to find the 2"? largest value. One algorithm would be to find the
max, discard it and then find the max of what is left.

What is the cost? Do you think this is optimal?

. Again, we want a lower bound proof for the 2”¢ max problem. Here is an attempt:

Anyone who lost to anyone who is not the max cannot be second. So, the only
candidates are those who lost to max. Findmax might compare max to n — 1 others.
Thus, we might need n — 2 additional comparisons to find the second max.

What is wrong with this argument?

Hint: There is something called the ”"necessary fallacy”. In this case it would say
that our algorithm does something, therefore all algorithms solving the problem must
do the same thing.

. Here is a ”divide and conquer” approach to finding the 2% max:

Break the list into two halves and then use Findmax on each half. Compare these
two winners and use Findmax on the winner’s half for locating the 2"? in that half.
Finally compare that 2"¢ to the winner of the other half to get the overall 2"% max.

What is the cost? Do you think this algorithm is optimal?

. If dividing in half improves things what would be the cost if we broke the list into four
pieces instead? What about eight pieces?



9.

10.

11.

12.

The only candidates for the 27¢ max are losers to the eventual winner. A data structure
to maintain that information efficiently is called a binomial tree. A binomial tree of
height m has 2m nodes organized as:

(a) a single node, if m =0, or

(b) two height m — 1 binomial trees with one tree’s root becoming a child of the
other.

If there are n nodes in the binomial tree, how many candidates are there for 27¢
max?

So here is another algorithm for 2"¢ max:
Build the binomial tree and then compare the log n children of the root for the 2% max.

What is the total cost?

A technique used in some lower bounds proofs is an ”adversary”. The algorithm asks
the adversary for information about the input. The adversary may never lie but can
choose input to make the algorithm work as hard as possible.

Imagine that the adversary keeps a list of all possible inputs. When the algorithm
asks a question, the adversary answers and crosses out all remaining input inconsistent
with that answer. At any point, the adversary is permitted to give any answer that is
consistent with at least one remaining input.

Explain how an adversary would make an algorithm work as hard as possible in a
game of Hangman? Remember that the word is not fixed and the adversary gets to
pick the input and hangman answers as the algorithm is performed as long as those
picks are consistent.

We will apply an adversary to the 2"¢ max problem:
At least n — 1 values must lose at least once so this will involve n — 1 compares.
Have k direct losers to the winner which must be compared as possibilities for the 27¢

max. Therefore, overall there must be at least n + k — 2 comparisons.

What question are we asking for a lower bound proof?



13.

14.

Call the 7strength” of an element L[i], the number of elements that L[i] is known to
be bigger or equal than. If L[i] has a strength a, and L[j] has a strength b, then the
winner of a contest between them will have strength a + b.

The adversary wants to minimize the rate at which an element gets stronger. So
on a contest between two candidates, which one will the adversary pick as the winner?
Why?

Hint: Consider what will happen to the strengths if a > b. Which pick will cause the
smallest increase?

So from the result above, at each contest an element’s strength will at most double.
After k comparisons an element’s strength is less than or equal to 2F.

What is the lowest value we can have for k as losers to the max? What does that say
about the optimality of the binomial tree algorithm?



Complete the following assignments to be submitted for grading. Each should be done in-
dividually but you can consult with a classmate to discuss your strategies.

Assignment 1:
Consider finding the median of three order-able elements A, B, and C"

1. Draw the possible posets of three elements (don’t label them) after two compar-
isons to demonstrate that any algorithm must perform at least three comparison
in the worst case.

2. Design an optimal algorithm to find the median.

3. Draw the decision tree for your algorithm and explain how the decision tree gives
the worst case cost.

Criteria for Success: You have three things: a lower bound proof with posets, an
optimal algorithm, and a decision tree.

Assignment 2:

Consider determining if at least three of five integer values are non-zero using only
operations of testing for equality to zero. Give an adversary strategy to force any
algorithm to examine all of the five values. Explain why your adversary strategy works
regardless of what comparison algorithm is used.

Criteria for Success: You have a clear explanation of the adversary strategy for
choosing the input value at each comparison to force any algorithm into worst case
behavior.

Assignment 3:

Use an adversary argument to prove a lower bound (an optimal worst case behavior)
for any algorithm which determines if there are any duplicates in a sorted array of size
n. In other words, how many comparisons can the adversary force any algorithm to
perform and what strategy does the adversary use? (Remember that the adversary’s
answers must be consistent.)

Criteria for Success: You have a clear explanation of the adversary strategy on
choosing the input to force any algorithm into worst case behavior.




