
CS330 – Order of Growth with Loops

Purpose: When there are multiple ways to solve a problem, we need to be able to compare
them in order to choose the best one. Time efficiency of algorithms is measured by length
of time that an algorithm runs as a function of the size of the input. Using this analysis
we can compare algorithm efficiency without having to actually measuring the running time.

Knowledge: This activity will help you become familiar with the following content knowl-
edge:

• Determine the proportional running time of code involving loops.

• Use the formal definition of Big-Oh.

Activity: With your group perform the following tasks and answer the questions. You will
be reporting your answers back to the class in 60 minutes.

1. We will start by counting things.

Consider the following algorithm:

a = f(0)

for (i = 1; i<=n; i++){

a = a + f(i)

}

How many calls are made to the function f?

2. Consider the following algorithm:

a = f(0)

for (i = 1; i<=n; i++){

for (j = 1; j<=n; j++){

a = a + f(i)

}

}

How many calls are made to the function f?

1



3. Let’s change the algorithm above so that the j loop starts at i rather than 1:

a = f(0)

for (i = 1; i<=n; i++){

for (j = i; j<=n; j++){

a = a + f(i)

}

}

How many calls are made to the function f?

Hint: 1 + 2 + ... + n = n(n+1)
2

4. Consider this one:

a = f(0)

for (i = 1; i<=n; i++){

for (j = 1; j<=n; j++){

for (k = j; k<=n; k++){

a = a + f(i) + j + k

}

}

}

How many calls are made to the function f?

5. The count of how many times things occur gives us a sense of the running time of the
algorithm. We want to examine what happens as the problem size increases.

For example, consider two algorithms A and B. Algorithm A takes 3n3 nanoseconds
to process input of size n versus algorithm B that takes 20, 000, 000n nanoseconds to
process input of size n. Be aware that a nanosecond is 10−9 seconds, a microsecond
is 10−6 seconds and a millisecond is 10−3 seconds.

If n = 10 then A takes 3 microseconds and B 200 milliseconds.
If n = 100 then A takes 3 microseconds and B 2 seconds.
If n = 1000 then A takes 3 seconds and B 20 seconds.

How much time would each algorithm take for n = 1, 000, 000? (Represent the time
in hours, days, or even years if appropriate to get the sense of scale).

2



6. We use Big Oh to describe the rate of growth of an algorithm. The intuition for Big
Oh is that we can avoid details when they don’t matter and they don’t matter when
the problem size n is big enough.

What do these functions have in common?
n2

.001n2

1000n2

5n2 + 3n + 2 log n

7. A more formal definition of Big Oh is that it is an upper bound. Formally, g(n) is
O(f(n)) if there exists constants c and n0 such that g(n) < cf(n) for all n > n0.

Give possible c and n0 to show that T (n) = n2 + 2n + 1 is O(n2). (There are many
possible values that will work but justify your choices.)

8. Give possible c and n0 to show that T (n) = 2n + 5n is O(2n).

9. We can use a proof by contradiction to show that T (n) = 2n2 is not O(n). In a proof
by contradiction we assume that there exists an n0 and c such that 2n2 < cn for all
n > n0. Why does this assumption lead to a contradiction?

3



Complete the following assignments to be submitted for grading. Each should be done in-
dividually but you can consult with a classmate to discuss your strategies.

Assignment 1:
Give the computational complexity of each of the following pieces of code in Big-Oh
notation and explain how you arrived at your result.

1. for (i=1; i<=n; i=i+2){

// constant number of operations

}

2. for (i=1; i<=n; i++){

for (j=i; j<=n; j=j+2){

// constant number of operations

}

}

3. for (j=n; j>1; j=j/2){

// constant number of operations

}

4. for (i=1; i<=n; i++){

for (j=n; j>1; j=j/2){

// constant number of operations

}

}

Criteria for Success: You have a Big-Oh and a brief explanation for each code
fragment.

Assignment 2:
Use the formal definition of Big-Oh to answer each of the following questions.

1. Is n2 + 100 of complexity O(n2)?

2. Is n2 + 100 of complexity O(n3)?

3. Is 2n+1 of complexity O(2n)?

4. Is 22n of complexity O(2n)?

Criteria for Success: You need to provide the c and n0 values for the formal definition
of Big-Oh or show that no c and n0 values exist by using a proof by contradiction.

4


