CS 325
Project
Part I
You are to write a lexical scanner for SIMPL. The scanner will have a function getToken which will return the next token. The token should contain an identification number and the string value of the token if required.

The following table gives the token types in the SIMPL language. (Note: a \ indicates that a meta-character is being used as a literal.)

	token
	! | ? | \| | : | <- | \(| \) | if | while | > | = | * | / | \+ | - | id | num

	id
	letter (letter | digit | _)*

	num
	digit+

	letter
	a | b | c ... | z | A | B | C ... | Z

	digit
	0 | 1 | 2 ... | 9

Your scanner should use the following driver program to test your code.

public static void main(String[] args) throws scannerError{

try{

 System.out.println(args[0]);

 scanner s = new scanner(new FileInputStream(args[0]));

 token t;

 do{

t = s.getToken();

System.out.println(t.type);

System.out.println(t.name);

System.out.println();

 }while(t.type != EOF);

}catch(FileNotFoundException e){System.err.println("Bad File");}

 }

The program takes an argument which is the name of the test file. You will run the java application in BlueJ by selecting void main(args) from the run options when you right click on the file icon. You can supply the program arguments by typing the arguments in the {} in the run window. The arguments are Strings so you must type them in quotes.
The scanner constructor takes an InputStream i as an argument. I suggest that the scanner creates a PushbackInputStream as follows:

in = new PushbackInputStream(i);

You can read from the PushbackInputStream with

char readchar() {

int ch;

try {

ch = in.read();

if (ch == -1) return ‘\0’;

else return (char)ch;

} catch(IOException e) {

System.out.println(“IO exception in readchar”);

return ‘\0’;

}

}

void unread(char c) {

try {

in.unread((int)c);

} catch (IOException e)

System.out.println(“Can not unread”);

}
Your scanner needs to be able to handle errors. If the scanner encounters an unexpected character, no error message should be printed by the scanner, but the current incomplete token, together with the unexpected character should be returned as an error token.

