CS325 – Javacc

Javacc is a parser generator which generates code in Java. We will test this out with our grammar for bitter.

1. Create a directory for your javacc work. Javacc creates lots of files so it is a good idea to work inside a directory.

2. Copy the following files into your directory.
~jillz/cs325/compilers/bitter1/bitter.jj
~jillz/cs325/compilers/bitter1/test

3. The bitter.jj file contains a bare-bones parser for the bitter grammar. Javacc will take this file and create a bunch of java files to parse the grammar:

javacc bitter.jj

4. We now need to compile these java files:

javac *.java

5. We now can run the java class bitter on a test file. I have provided a test file for you called test. Take a look at the file. You can use the command:

cat test

6. To run the bitter class on the test file:

java bitter < test
Edit test with your favorite editor to make a parse error and try running it again.

7. Notice that the jj file only produces a parser which either accepts of rejects an input stream. What we really want to do is create a syntax or parse tree. This is where jjtree files come in. Copy the following file into your directory:

~jillz/cs325/compilers/bitter2/bitter.jjt

8. This jjt file will create a parse tree. Jjtree is a preprocessor for javacc so running jjtree will create a jj file. To run jjtree:

jjtree bitter.jjt

9. Go through the same process as before to run javacc, compile the java files, and run the bitter class file. Make sure that you understand why you have the resulting parse tree.

10. The parse tree that was generated was pretty minimalist in that the nodes of the tree did not contain the IDs and Strings that were parsed. To do this, I have edited the class SimpleNode to contain the token information and edited the bitter.jjt to enter that information into the nodes. Copy the following files and test them out with a new test file.

~jillz/cs325/compilers/bitter3/bitter.jjt

~jillz/cs325/compilers/bitter3/SimpleNode.java

~jillz/cs325/compilers/bitter3/test
Again, make sure that you understand why you have the resulting parse tree.

11. Instead of a parse tree, what we really want is an abstract syntax tree that indicates that the statements are either clear of assign. Copy the following file, test it out, and see if you can figure out why it works the way it does.

 ~jillz/cs325/compilers/bitter4/bitter.jjt

12. Finally, we want to be able to traverse the tree to do syntactic analysis and code generation. I am not going to do either of those tasks here but I will show you how to traverse the tree that we have generated with the Visitor class. Copy the following files and test them out. As always, make sure that you understand how they are working.

 ~jillz/cs325/compilers/bitter5/bitter.jjt

 ~jillz/cs325/compilers/bitter5/Visitor.java

