
CS224 – Lab 3

Purpose: Polymorphism and inheritance in Java requires the methods to be dynamically
dispatched during runtime. Java always performs dynamic dispatch (also called late bind-
ing, or dynamic binding, etc) when invoking a method on an object. It looks up the runtime
type of the actual object and then, if the method has been overridden one or more times in
the inheritance hierarchy, it invokes the most specific method definition.

In this lab we will model this process of dynamic dispatch by implementing a recursive
search for the desired method through the inheritance hierarchy.

Knowledge: This lab will help you become familiar with the following content knowledge:

• The mechanics of dynamic dispatch

Task: Follow the steps in this lab carefully to complete the assignments.

Assignment 1:
Now that you understand the getClass method we can write a recursive search to find
the appropriate method for dynamic dispatch. Use the following steps to implement
the callMethodFromClassElseFromSuper method in the DynamicDispatch class:

1. Since we′ll be using recursion, we need to have a base case. We′ll be recursing
up the inheritance hierarchy with Class.getSuperClass(). If you do this iter-
atively we eventually end up with the class Object, which is the parent of all
classes in Java. If you call getSuperClass() on Object, it returns null.

In your method, first check to see if the Class argument is null. If it is null

we know our search failed to find any method to invoke and you should create
a new NoSuchMethodException, giving message1 to the constructor and throw
this exception.

2. Otherwise, use the static method log with message2 indicating that you are now
trying to find the method on the current class. Get the declared methods of the
class (using getDeclaredMethods()) and loop over them using a for-each loop.

3. For each Method object, check if its name (returned by getName()) is the name
of the method you are looking for. If it is, further check that its parameter types
(returned by getParameterTypes()) are compatible with the arguments you are
given. Do this with the provided static method parameterTypesMatchArguments.

4. If the name matches and the argument types are compatible, we′ve found our
method! Use the log method on message3 to state you found a suitable method.
Try to return the result of invoking the method on the Object o with the provided
arguments. Do this by returning the result of the following with m being the
current method.

1



m.invoke(Object obj, Object?? args)

You will need to do this inside a try and you need to catch any Exceptions and
throw a new RuntimeException, giving the constructor the exception you caught.

5. If you looped through all the declared methods on the given class, and none
of them matched the desired method, then it′s time to continue the search in
the parent class, to see if they have a definition for it. Return the result of
recursively calling callMethodFromClassElseFromSuper with the super class of
the class argument, and the same parameters otherwise.

Criteria for Success: When you uncomment dynamicDispatchExercise in the Test-
Code you should see the correct results for executing methods on the string s

Assignment 2:
Add additional tests in the TestCode for dispatching the method toString on the ob-
ject ac (defined as in the previous code), and for dispatching the sum method on the
objects bb and cc.

Criteria for Success: You get the same results as in the previous TestCode.

Submit your entire DynamicDispatch directory as a single zip archive in Canvas for grading.

2


